
00ProRef.book : 01Title.fm Page 1 Monday, March 9, 1998 3:23 PM
LabWindows/CVI
Programmer
Reference Manual
LabWindows/CVI Programmer Reference Manual
February 1998 Edition
Part Number 320685D-01

725 11,
91,
4 00,
7 1200,

00ProRef.book : 01Title.fm Page 2 Monday, March 9, 1998 3:23 PM
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1994, 1998 National Instruments Corporation. All rights reserved.

00ProRef.book : 02Warr.fm Page 3 Monday, March 9, 1998 3:23 PM
 Important Information

enced
do not
riod.

ide
 costs

viewed
right to
 should
ages

nal
rranty

follow

s, or

nical,
hout

ility
edical
 of the
inical
uards,
 always
ntended
n health
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully re
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any dam
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. Natio
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The wa
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partie
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
CVI™, National Instruments™, the National Instruments logo, natinst.com ™, and The Software is the Instrument™are
trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliab
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving m
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part
user or application designer. Any use or application of National Instruments products for or involving medical or cl
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeg
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should
continue to be used when National Instruments products are being used. National Instruments products are NOT i
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard huma
and safety in medical or clinical treatment.

00ProRef.book : 00ProRefTOC.fm Page v Monday, March 9, 1998 3:23 PM
Contents
xiii
xiv
xv
vi

-1
-1
-2
-2

.1-2
.1-2
-2
2
-3
-4

1-4
-4
5
.
-5
.1-6
1-6
-6

.1-8
.
-8
8
-9
-9
-10
-10
-10
-11
11
11
About This Manual
Organization of This Manual ...
Conventions Used in This Manual...

Related Documentation ...
Customer Communication...x

Chapter 1
LabWindows/CVI Compiler

Overview..1-1
LabWindows/CVI Compiler Specifics ..1

Compiler Limits...1
Compiler Options ..1
Compiler Defines...1

C Language Non-Conformance ..
C Language Extensions ..

Keywords That Are Not ANSI C Standard ...1
Calling Conventions (Windows 95/NT Only)...1-
Import and Export Qualifiers...1
C++ Comment Markers...1
Duplicate Typedefs..
Structure Packing Pragma (Windows 3.1 and Windows 95/NT Only).............1
Program Entry Points (Windows 95/NT Only) ...1-

C Library Issues ..1-5
Using the Low-Level I/O Functions..1

C Data Types and 32-Bit Compiler Issues..
Data Types...
Converting 16-Bit Source Code to 32-Bit Source Code1

Debugging Levels ...
User Protection ...1-8

Array Indexing and Pointer Protection Errors...1
Pointer Arithmetic (Non-Fatal) ...1-
Pointer Assignment (Non-Fatal) ...1
Pointer Dereference Errors (Fatal) ..1
Pointer Comparison (Non-Fatal)...1
Pointer Subtraction (Non-Fatal)..1
Pointer Casting (Non-Fatal) ..1

Dynamic Memory Protection Errors ...1
Memory Deallocation (Non-Fatal)..1-
Memory Corruption (Fatal)...1-
© National Instruments Corporation v LabWindows/CVI Programmer Reference Manual

Contents

1-11
-11
-12

12
2
2
3
-14
-14
15

15
16
-16

. 1-17

2-1

2

-2
-3
-3
-4
-4
-5
-6
-6
-7

-1
2
-2

-2
-2

00ProRef.book : 00ProRefTOC.fm Page vi Monday, March 9, 1998 3:23 PM
General Protection Errors..
Library Protection Errors .. 1
Disabling User Protection ... 1

Disabling Protection Errors at Run-Time... 1-
Disabling Library Errors at Run-Time ... 1-1
Disabling Protection for Individual Pointer.. 1-1
Disabling Library Protection Errors for Functions............................. 1-1

Details of User Protection ... 1
Pointer Casting ... 1
Dynamic Memory... 1-

Avoid Unassigned Dynamic Allocation in
Function Parameters .. 1-

Library Functions ... 1-
Unions... 1

Stack Size .. 1-16
Include Paths ... 1-17

Include Path Search Precedence ..

Chapter 2
Using Loadable Compiled Modules

About Loadable Compiled Modules ...
Advantages and Disadvantages of Using Loadable Compiled Modules

in LabWindows/CVI .. 2-
Using a Loadable Compiled Module as an Instrument Driver

Program File... 2
Using a Loadable Compiled Module as a User Library.................................... 2
Using a Loadable Compiled Module in the Project List................................... 2
Using a Loadable Compiled Module as an External Module 2
Notification of Changes in Run State ... 2

Example 1 ... 2
Example 2 ... 2

Using Run State Change Callbacks in a DLL... 2
Compiled Modules that Contain Asynchronous Callbacks 2

Chapter 3
Windows 95/NT Compiler/Linker Issues

Loading 32-Bit DLLs under Windows 95/NT .. 3
DLLs for Instrument Drivers and User Libraries.. 3-
Using The LoadExternalModule Function ... 3
Link Errors when Using DLL Import Libraries.. 3-2
DLL Path (.pth) Files Not Supported.. 3
16-Bit DLLs Not Supported.. 3
LabWindows/CVI Programmer Reference Manual vi © National Instruments Corporation

Contents

-2
-3
3-3
-4
-4
-4
-5
5
-5
-6
-6
-7
-7
-7
-7
-7
-8

3-8
-8
-9

-10
-10
-10
1
-12

-12
12

3
-13
14
-15
-15
-15
16
-16
-16
-16
-17
-17

00ProRef.book : 00ProRefTOC.fm Page vii Monday, March 9, 1998 3:23 PM
Run State Change Callbacks in DLLs...3
DllMain..3
Releasing Resources when a DLL Unloads ..
Generating an Import Library..3
Default Unloading/Reloading Policy ..3

Compatibility with External Compilers...3
Choosing Your Compatible Compiler...3
Object Files, Library Files, and DLL Import Libraries3-
Compatibility Issues in DLLs..3

Structure Packing ..3
Bit Fields ...3
Returning Floats and Doubles...3
Returning Structures ...3
Enum Sizes..3
Long Doubles..3

Differences between LabWindows/CVI and the External Compilers...............3
External Compiler Versions Supported...3
Required Preprocessor Definitions..

Multithreading and the LabWindows/CVI Libraries...3
Using LabWindows/CVI Libraries in External Compilers..3

Include Files for the ANSI C Library and the LabWindows/CVI
Libraries..3

Standard Input/Output Window ..3
Resolving Callback References from .UIR Files ..3

Linking to Callback Functions Not Exported from a DLL.................3-1
Resolving References from Modules Loaded at Run-Time..............................3

Resolving References to the LabWindows/CVI
Run-Time Engine ...3

Resolving References to Symbols Not in Run-Time Engine..............3-
Resolving Run-Time Module References to Symbols

Not Exported from a DLL..3-1
Run State Change Callbacks Are Not Available in External Compilers...........3
Calling InitCVIRTE and CloseCVIRTE...3-
Watcom Stack Based Calling Convention ..3

Using Object and Library Files in External Compilers ...3
Default Library Directives...3

Microsoft Visual C/C++ ...3-
Borland C/C++..3
Watcom C/C++ ...3
Symantec C/C++...3

Borland Static versus Dynamic C Libraries ..3
Borland Incremental Linker ..3
© National Instruments Corporation vii LabWindows/CVI Programmer Reference Manual

Contents

-17
-17

-18
-18
-18
-19

3-19
-20

-20
-20
-21

21
22
22
22

23
-24

24
-25
-26
26
-26
27
-27
27
28

8

-29

-1
-1
-2
-3

-4

00ProRef.book : 00ProRefTOC.fm Page viii Monday, March 9, 1998 3:23 PM
Borland C++ Builder... 3
Watcom Pull-in References .. 3

Creating Object and Library Files in External Compilers for Use
in LabWindows/CVI... 3

Microsoft Visual C/C++ ... 3
Borland C/C++.. 3
Watcom C/C++ ... 3
Symantec C/C++...

Creating Executables in LabWindows/CVI .. 3
Creating DLLs in LabWindows/CVI .. 3

Customizing an Import Library... 3
Preparing Source Code for Use in a DLL ... 3

Calling Convention for Exported Functions....................................... 3-
Exporting DLL Functions and Variables.. 3-
Include File Method.. 3-
Export Qualifier Method .. 3-
Marking Imported Symbols in Include File Distributed

with DLL ... 3-
Recommendations .. 3

Automatic Inclusion of Type Library Resource for Visual Basic 3-
Creating Static Libraries in LabWindows/CVI ... 3
Creating Object Files in LabWindows/CVI .. 3
Calling Windows SDK Functions in LabWindows/CVI... 3-

Windows SDK Include Files... 3
Using Windows SDK Functions for User Interface Capabilities 3-
Using Windows SDK Functions to Create Multiple Threads........................... 3
Automatic Loading of SDK Import Libraries... 3-

Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries.............. 3-
Compiling in LabWindows/CVI for Linking in LabWindows/CVI................. 3-28
Compiling in LabWindows/CVI for Linking in an External Compiler 3-28
Compiling in an External Compiler for Linking in an External Compiler 3-2
Compiling in an External Compiler for Linking in LabWindows/CVI 3-29

Handling Hardware Interrupts under Windows 95/NT ... 3

Chapter 4
Windows 3.1 Compiler/Linker Issues

Using Modules Compiled by LabWindows/CVI .. 4
Using 32-Bit Watcom Compiled Modules under Windows 3.1...................................... 4
Using 32-Bit Borland or Symantec Compiled Modules under Windows 3.1 4
16-Bit Windows DLLs .. 4

Helpful LabWindows/CVI Options for Working with DLLs........................... 4-4
DLL Rules and Restrictions.. 4
LabWindows/CVI Programmer Reference Manual viii © National Instruments Corporation

Contents

-7
-8
-8

-8

-9

1

5

18

-21
1
22
4-23

5-1
-1
-2

5-2
-2
-3
-3
-3

4

-5
-6

-6
6
5-7
-7

00ProRef.book : 00ProRefTOC.fm Page ix Monday, March 9, 1998 3:23 PM
DLL Glue Code ...4
DLLs That Can Use Glue Code Generated at Load Time4
DLLs That Cannot Use Glue Code Generated at Load Time4
Loading a DLL That Cannot Use Glue Code Generated

at Load Time ..4
Rules for the DLL Include File Used to

Generate Glue Source ..4
If the DLL Requires a Support Module outside the DLL.....4-9
If You Pass Arrays Bigger Than 64 K to the DLL...............4-9
If the DLL Retains a Buffer after the Function Returns

(an Asynchronous Operation)..4-1
If the DLL Calls Directly Back into 32-Bit Code4-12
If the DLL Returns Pointers ...4-1
If a DLL Receives a Pointer that Points to Other

Pointers ..4-
DLL Exports Functions by Ordinal Value Only4-20

Recognizing Windows Messages Passed from a DLL......................................4
Creating 16-bit DLLs with Microsoft Visual C++ 1.5......................................4-2
Creating 16-bit DLLs with Borland C++ ..4-
DLL Search Precedence ..

Chapter 5
UNIX Compiler/Linker Issues

Calling Sun C Library Functions ...
Restrictions on Calling Sun C Library Functions..5

Using Shared Libraries in LabWindows/CVI..5
Using dlopen..

The LabWindows/CVI Run-Time Engine as a Shared Library.......................................5
Creating Executables that Use the LabWindows/CVI Libraries5

Compatible External Compilers ..5
Static and Shared Versions of the ANSI C and Other Sun Libraries5
Non-ANSI Behavior of Sun Solaris 1 ANSI C Library5-4
LabWindows/CVI Implements printf and scanf..5-
Main Function Must Call InitCVIRTE..5-4
Run State Change Callbacks Are Not Available in Executables5

Using Externally Compiled Modules ..5
Restrictions on Externally Compiled Modules..5
Compiling Modules With External Compilers..5-

Locking Process Segments into Memory Using plock() ...
UNIX Asynchronous Signal Handling ..5
© National Instruments Corporation ix LabWindows/CVI Programmer Reference Manual

Contents

-8
5-9
9

-10
10
-11

-1
6-1
-3
-3

7-1
-1

2
2
2
-2
-3
-4

7-5
7-5
7-5
-6

7
-7
7
. 7-8
-9
-9
0
0

10

00ProRef.book : 00ProRefTOC.fm Page x Monday, March 9, 1998 3:23 PM
Solaris 1 ANSI C Library Implementation.. 5
Replacement Functions ...
Additional Functions Not Found in Sun Solaris 1 libc 5-

Incompatibilities among LabWindows/CVI, Sun Solaris, and ANSI C 5
Between LabWindows/CVI and ANSI C ... 5-
Between LabWindows/CVI and Sun Solaris .. 5

Chapter 6
Building Multiplatform Applications

Multiplatform Programming Guidelines ... 6
Library Issues..
Externally Compiled Modules .. 6

Multiplatform User Interface Guidelines .. 6

Chapter 7
Creating and Distributing Standalone Executables and DLLs

Introduction to the Run-Time Engine..
Distributing Standalone Executables under Windows...................................... 7

Minimum System Requirements for Windows 95/NT....................... 7-1
No Math Coprocessor Required for Windows 95/NT........................ 7-
Minimum System Requirements for Windows 3.1 7-
Math Coprocessor Software Emulation for Windows 3.1.................. 7-

Distributing Standalone Executables under UNIX ... 7
Distributing Standalone Executables under Solaris 2......................... 7
Distributing Standalone Executables under Solaris 1......................... 7
Minimum System Requirements for UNIX.. 7-5

Translating the Message File ..
Configuring the Run-Time Engine..

Solaris 1 Patches Required for Running Standalone Executable......................
Configuration Option Descriptions... 7

cvirtx (Windows 3.1 Only) ... 7-6
cvidir (Windows Only) ... 7-7
useDefaultTimer (Windows Only) ... 7-
DSTRules.. 7
UNIX Options... 7-

Necessary Files for Running Executable Programs ...
Necessary Files for Using DLLs Created in Windows 95/NT.. 7
Location of Files on the Target Machine for Running Executables and DLLs............... 7

LabWindows/CVI Run-Time Engine under Windows 95/NT 7-1
Run-Time Library DLLs .. 7-1
Low-Level Support Driver ... 7-
LabWindows/CVI Programmer Reference Manual x © National Instruments Corporation

Contents

7-11
11
11
-12
-12
13
13
14

5
15

16

17

-17
18
7-19
-19

8-1
-1
8-2

-3
-3
-3
-4
-4
-4
-4
-5

-5
-5
-6
-6

00ProRef.book : 00ProRefTOC.fm Page xi Monday, March 9, 1998 3:23 PM
Message, Resource, and Font Files...
National Instruments Hardware I/O Libraries7-

LabWindows/CVI Run-Time Engine under Windows 3.17-
LabWindows/CVI Run-Time Engine under Sun Solaris7
Rules for Accessing UIR, Image, and Panel State Files on All Platforms........7
Rules for Using DLL Files under Windows 95/NT ..7-
Rules for Using DLL Files under Windows 3.1..7-
Rules for Loading Files Using LoadExternalModule7-

Forcing Modules that External Modules Refer to
into Your Executable or DLL ..7-1

Using LoadExternalModule on Files in the Project............................7-
Using LoadExternalModule on Library and Object Files

Not in the Project ...7-
Using LoadExternalModule on DLL Files under

Windows 95/NT ...7-
Using LoadExternalModule on DLL and Path Files

under Windows 3.1 ..7
Using LoadExternalModule on Source Files (.c)................................7-

Rules for Accessing Other Files ..
Error Checking in Your Standalone Executable or DLL7

Chapter 8
Distributing Libraries and Function Panels

How to Distribute Libraries ...
Adding Libraries to User’s Library Menu ...8
Specifying Library Dependencies..

Chapter 9
Checking for Errors in LabWindows/CVI

Error Checking...9-2
Status Reporting by LabWindows/CVI Libraries and Instrument Drivers......................9

User Interface Library ...9
Analysis/Advanced Analysis Libraries ...9
Easy I/O for DAQ Library...9
Data Acquisition Library...9
VXI Library ...9
GPIB/GPIB 488.2 Library...9
RS-232 Library..9
VISA Library...9
IVI Library...9
TCP Library...9
DDE Library..9
© National Instruments Corporation xi LabWindows/CVI Programmer Reference Manual

Contents

6
-6
-6
7
-7
7

-8

1
6
-16

-10

-11
7-12

A-1

00ProRef.book : 00ProRefTOC.fm Page xii Monday, March 9, 1998 3:23 PM
ActiveX Automation Library .. 9-
X Property Library .. 9
Formatting and I/O Library... 9
Utility Library ... 9-
ANSI C Library... 9
LabWindows/CVI Instrument Drivers.. 9-

Appendix A
Errors and Warnings

Appendix B
Customer Communication

Glossary

Figures
Figure 7-1. Files Necessary to Run a LabWindows/CVI Executable Program

on a Target Machine ... 7

Tables
Table 1-1. LabWindows/CVI Compiler Limits ... 1-
Table 1-2. LabWindows/CVI Allowable Data Types .. 1-
Table 1-3. Stack Size Ranges for LabWindows/CVI... 1

Table 7-1. LabWindows/CVI Run-Time Engine Files .. 7
Table 7-2. Windows NT Registry Entry Values for the Low-Level

Support Driver .. 7
Table 7-3. Pathnames and Targets of Links ...

Table A-1. Error Messages..
LabWindows/CVI Programmer Reference Manual xii © National Instruments Corporation

00ProRef.book : 05atm.fm Page xiii Monday, March 9, 1998 3:23 PM
About This Manual

,

 your
ble

The LabWindows/CVI Programmer Reference Manual contains
information to help you develop programs in LabWindows/CVI. The
LabWindows/CVI Programmer Reference Manual is intended for use by
LabWindows users who have already completed the Getting Started with
LabWindows/CVI tutorial. To use this manual effectively, you should be
familiar with Getting Started with LabWindows/CVI, the LabWindows/CVI
User Manual, DOS, Windows, and the C programming language.

Organization of This Manual
The LabWindows/CVI Programmer Reference Manual is organized as
follows:

• Chapter 1, LabWindows/CVI Compiler, describes LabWindows/CVI
compiler specifics, C language extensions, 32-bit compiler issues
debugging levels, and user protection.

• Chapter 2, Using Loadable Compiled Modules, describes the
advantages and disadvantages of using compiled code modules in
application. It also describes the kinds of compiled modules availa
in LabWindows/CVI and includes programming guidelines for
modules you generate with external compilers.

• Chapter 3, Windows 95/NT Compiler/Linker Issues, describes the
different kinds of compiled modules available under
LabWindows/CVI for Windows 95/NT and includes programming
guidelines for modules you generate with external compilers.

• Chapter 4, Windows 3.1 Compiler/Linker Issues, describes the
different kinds of compiled modules available under
LabWindows/CVI for Windows 3.1 and includes programming
guidelines for modules you generate with external compilers.

• Chapter 5, UNIX Compiler/Linker Issues, describes the kinds of
compiled modules available under LabWindows/CVI for UNIX and
includes programming guidelines for modules you generate with
external compilers.

• Chapter 6, Building Multiplatform Applications, contains guidelines
and caveats for writing platform-independent LabWindows/CVI
applications. LabWindows/CVI currently runs under Windows 3.1
and Windows 95/NT for the PC, and Solaris 1 and Solaris 2 for the
SPARCstation.
© National Instruments Corporation xiii LabWindows/CVI Programmer Reference Manual

About This Manual

00ProRef.book : 05atm.fm Page xiv Monday, March 9, 1998 3:23 PM
• Chapter 7, Creating and Distributing Standalone Executables and
DLLs, describes how the LabWindows/CVI Run-time Engine, DLLs,
externally compiled modules, and other files interact with your
executable file. This chapter also describes how to perform error
checking in a standalone executable program. You can create
executable programs from any project that runs in the
LabWindows/CVI environment.

• Chapter 8, Distributing Libraries and Function Panels, describes how
to distribute libraries, add libraries to a user’s Librar y menu, and
specify library dependencies.

• Chapter 9, Checking for Errors in LabWindows/CVI, describes
LabWindows/CVI error checking and how LabWindows/CVI reports
errors in LabWindows/CVI libraries and compiled external modules.

• Appendix A, Errors and Warnings, contains an alphabetized list of
compiler warnings, compiler errors, link errors, DLL loading errors,
and external module loading errors generated by LabWindows/CVI.

• Appendix B, Customer Communication, contains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

• The Glossary contains an alphabetical list of terms used in this manual
and a description of each.

• The Index contains an alphabetical list of key terms and topics used in
this manual, including the page where each one can be found.

Conventions Used in This Manual
The following conventions are used in this manual.

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Ctrl-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options» Substit ute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.
LabWindows/CVI Programmer Reference Manual xiv © National Instruments Corporation

About This Manual

ou

es
.

ialog

ction
e

er
tax
ths,

puter

s or

rive

n

00ProRef.book : 05atm.fm Page xv Monday, March 9, 1998 3:23 PM
This icon to the left of bold italicized text denotes a note, which alerts y
to important information.

This icon to the left of bold italicized text denotes a caution, which advis
you of precautions to take to avoid injury, data loss, or a system crash

bold Bold text denotes the names of menus, menu items, parameters, or d
box buttons.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text from which you supply th
appropriate word or value.

monospace Text in this font denotes text or characters that you should literally ent
from the keyboard, sections of code, programming examples, and syn
examples. This font is also used for the proper names of disk drives, pa
directories, programs, functions, filenames and extensions, and for
statements and comments taken from programs.

monospace bold Bold text in this font denotes the messages and responses that the com
automatically prints to the screen.

monospace italic Italic text in this font denotes that you must enter the appropriate word
values in the place of these items.

paths Paths in this manual are denoted using backslashes (\) to separate d
names, directories, folders, and files.

Related Documentation
You may find the following documentation helpful while programming i
LabWindows/CVI:

• Microsoft Developer Network CD, Microsoft Corporation,
Redmond WA

• Programmer’s Guide to Microsoft Windows 95, Microsoft Press,
Redmond WA, 1995

• Harbison, Samuel P. and Guy L. Steele, Jr., C: A Reference Manual,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995

!

© National Instruments Corporation xv LabWindows/CVI Programmer Reference Manual

About This Manual

 and

00ProRef.book : 05atm.fm Page xvi Monday, March 9, 1998 3:23 PM
Customer Communication
National Instruments wants to receive your comments on our products
manuals. We are interested in the applications you develop with our
products, and we want to help you if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.
LabWindows/CVI Programmer Reference Manual xvi © National Instruments Corporation

© National Instruments Corporation 1-1 LabWindows/CVI Programmer

00ProRef.book : 06chap01.fm Page 1 Monday, March 9, 1998 3:23 PM
1

2-bit

93
user

also
LabWindows/CVI Compiler

This chapter describes LabWindows/CVI compiler specifics, C language extensions, 3
compiler issues, debugging levels, and user protection.

Overview
The LabWindows/CVI compiler is a 32-bit ANSI C compiler. The kernel of the
LabWindows/CVI compiler is the lcc ANSI C compiler (© Copyright 1990, 1991, 1992, 19
David R. Hanson). It is not an optimizing compiler, but instead focuses on debugging,
protection, and platform independence. Because the compiler is an integral part of the
LabWindows/CVI environment and features a limited set of straightforward options, it is
easy to use.

LabWindows/CVI Compiler Specifics
This section describes specific LabWindows/CVI compiler limits, options, defines, and
diversions from the ANSI C standard.

Compiler Limits
Table 1-1 shows the compiler limits for LabWindows/CVI.

Table 1-1. LabWindows/CVI Compiler Limits

Coding Attribute Limit

Maximum nesting of #include 32

Maximum nesting of #if , #ifdef 16

Maximum number of macro parameters 32

Maximum number of function parameters 64

Maximum nesting of compound blocks 32

Maximum size of array/struct types 2
31
Reference Manual

Chapter 1 LabWindows/CVI Compiler

 is to
 in

n

00ProRef.book : 06chap01.fm Page 2 Monday, March 9, 1998 3:23 PM
Compiler Options
You can set the LabWindows/CVI compiler options by selecting Options»Compiler Options
in the Project window. This command opens a dialog box that allows you to set
LabWindows/CVI compiler options. For a discussion of these options, refer to the Compiler
Options section in Chapter 3, Project Window, of the LabWindows/CVI User Manual.

Compiler Defines
The LabWindows/CVI compiler accepts compiler defines through the Compiler Defines
command in the Options menu of the Project window. For more information, refer to the
Compiler Defines section in Chapter 3, Project Window, of the LabWindows/CVI User
Manual.

C Language Non-Conformance
LabWindows/CVI for UNIX does not allow you to pass a struct as one of a series of
unspecified variable arguments. Because of this, va_arg (ap, type) is not legal in
LabWindows/CVI if type is a struct type.

LabWindows/CVI accepts the #line preprocessor directive, but ignores it.

C Language Extensions
The LabWindows/CVI compiler has several extensions to the C language. The purpose
make the LabWindows/CVI compiler compatible with the commonly used C extensions
external compilers under Windows 95/NT.

Keywords That Are Not ANSI C Standard
LabWindows/CVI for Windows 3.1 accepts the non-ANSI C keywords pascal , PASCAL, and
_pascal , but ignores them.

Calling Conventions (Windows 95/NT Only)
You can use the following calling convention qualifiers in function declarations:

cdecl

_cdecl

__cdecl (recommended)
_stdcall

__stdcall (recommended)

In Microsoft Visual C/C++, Borland C/C++, and Symantec C/C++, the calling conventio
normally defaults to __cdecl if you do not use a calling convention qualifier. You can,
LabWindows/CVI Programmer Reference Manual 1-2 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

 for

de,
d. The

mber

he

rn

sic

00ProRef.book : 06chap01.fm Page 3 Monday, March 9, 1998 3:23 PM
however, set options to cause the calling convention to default to __stdcall . The behavior
is the same in LabWindows/CVI. You can set the default calling convention to either __cdecl
or __stdcall using the Compiler Options command in the Options menu of the Project
window. When you create a new project, the default calling convention is __cdecl .

In Watcom C/C++, the default calling convention is not __cdecl or __stdcall . You must
use the -4s (80486 Stack-Based Calling) option when you compile a module in Watcom
use in LabWindows/CVI. Refer to the Compatibility with External Compilers section in
Chapter 3, Windows 95/NT Compiler/Linker Issues. The -4s option causes the stack-based
calling convention to be the default. In LabWindows/CVI under Watcom compatibility mo
the default calling convention is always the stack-based convention. It cannot be change
LabWindows/CVI compiler accepts the __cdecl and __stdcall conventions under
Watcom, except that floating point and structure return values do not work in the __cdecl
calling convention. National Instruments recommends that you avoid using __cdecl with
Watcom.

In the __cdecl calling convention and the Watcom stack-based calling convention, the
calling function is responsible for cleaning up the stack. Functions can have a variable nu
of arguments.

In the __stdcall calling convention, the called function is responsible for cleaning up t
stack. Functions with a variable number of arguments do not work in __stdcall . If you use
the __stdcall qualifier on a function with a variable number of arguments,
LabWindows/CVI does not honor the qualifier. All compilers pass parameters and retu
values in the same way for __stdcall functions, except for floating point and structure
return values.

National Instruments recommends the __stdcall calling convention for all functions
exported from a DLL, except functions with a variable number of arguments. Visual Ba
and other non-C Windows programs expect DLL functions to be __stdcall .

Import and Export Qualifiers
You can use the following qualifiers in variable and function declarations:

__declspec(dllimport)

__declspec(dllexport)

__import

__export

_import

_export
© National Instruments Corporation 1-3 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

I

ns
not.

end of

me

nt
ition:

dary

dary,

00ProRef.book : 06chap01.fm Page 4 Monday, March 9, 1998 3:23 PM
At this time, not all these qualifiers work in all external compilers. The LabWindows/CV
cvidef.h include file defines the following macros, which are designed to work in each
external compiler.

DLLIMPORT

DLLEXPORT

An import qualifier informs the compiler that the symbol is defined in a DLL. Declaratio
of variables imported from a DLL require import qualifiers, but function declarations do

An export qualifier is relevant only in a project for which the target type is Dynamic Link
Library. The qualifier can be on the declaration or definition of the symbol, or both. The
qualifier instructs the linker to include the symbol in the DLL import library.

C++ Comment Markers
You can use double slashes (//) to begin a comment. The comment continues until the
the line.

Duplicate Typedefs
The LabWindows/CVI compiler does not report an error on multiple definitions of the sa
typedef identifier, as long as the definitions are identical.

Structure Packing Pragma (Windows 3.1 and Windows 95/NT Only)
The pack pragma can be used within LabWindows/CVI to specify the maximum alignme
factor for elements within a structure. For example, assume the following structure defin

struct t {

double d1;

char charVal;

short shortVal;

double d2;

};

If the maximum alignment is 1, the compiler can start the structure on any 1-byte boun
and inserts no gaps between the structure elements.

If the maximum alignment is 8, the compiler must start the structure on an 8-byte boun
place shortVal on a 2-byte boundary, and place d2 on an 8-byte boundary.
LabWindows/CVI Programmer Reference Manual 1-4 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

rnal

evel

I C
ard

ry.

00ProRef.book : 06chap01.fm Page 5 Monday, March 9, 1998 3:23 PM
You can set the maximum alignment as follows:

#pragma pack(4) /* sets maximum alignment to 4 bytes */

#pragma pack(8) /* sets maximum alignment to 8 bytes */

#pragma pack() /* resets to the default*/

The maximum alignment the compiler applies to a structure is based on the last pack

pragma statement it sees before the definition of the structure.

Program Entry Points (Windows 95/NT Only)
Under Windows 95/NT, you can use WinMain instead of main as the entry-point function to
your program. You might want to do this if you plan to link your executable using an exte
compiler. You must include windows.h for the data types that normally appear in the
WinMain parameter list. The following is the prototype for WinMain with the Windows data
types reduced to intrinsic C types.

int __stdcall WinMain(void * hInstance, void * hPrevInstance,

char * lpszCmdLine int nCmdShow)

C Library Issues
This section discusses special considerations in LabWindows/CVI in the areas of low-l
I/O functions and the UNIX C library.

Using the Low-Level I/O Functions
Many functions in the UNIX libraries and the C compiler libraries for the PC are not ANS
Standard Library functions. In general, LabWindows/CVI implements the ANSI C Stand
Library. Under UNIX, you can call UNIX libraries for the non-ANSI C functions in
conjunction with LabWindows/CVI.

The low-level I/O functions open , close , read , write , lseek , and eof are not in the
ANSI C Standard Library. Under UNIX, these functions are available in the UNIX C libra
Refer to Chapter 5, UNIX Compiler/Linker Issues, for more information.

Under Windows, you can use these functions along with sopen and fdopen if you include
lowlvlio.h .
© National Instruments Corporation 1-5 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

rting

e

exists
s and

00ProRef.book : 06chap01.fm Page 6 Monday, March 9, 1998 3:23 PM
C Data Types and 32-Bit Compiler Issues
This section introduces the LabWindows/CVI compiler data types and discusses conve
16-bit source code to 32-bit source code.

Data Types
Table 1-2 shows the LabWindows/CVI allowable data types.

The size of an enumeration type depends on the value of its enumeration constant.
In LabWindows/CVI, characters are signed , unless you explicitly declare them unsigned .
The types float and double conform to 4-byte and 8-byte IEEE standard formats.

Converting 16-Bit Source Code to 32-Bit Source Code
If you convert a LabWindows for DOS application to a LabWindows/CVI application, us
this section as a guide after you complete the steps in Chapter 12, Converting LabWindows
for DOS Applications, of the Getting Started with LabWindows/CVI manual.

In general, if you make few assumptions about the sizes of data types, little difference
between a 16-bit compiler and a 32-bit compiler except for the larger capacity of integer
the larger address space for arrays and pointers.

Table 1-2. LabWindows/CVI Allowable Data Types

Type Size Minimum Maximum

char 8 –128 127

unsigned char 8 0 255

short 16 –32,768 32,767

unsigned short 16 0 65,535

int ; long int 32 –231 231–1

unsigned int 32 0 232–1

unsigned long 32 0 232–1

float 32 –3.40282E+38 3.40282E+38

double ; long double 64 –1.79769E+308 1.79769E+308

pointers (void *) 32 N/A N/A

enum 8, 16, or 32 –231 231–1
LabWindows/CVI Programmer Reference Manual 1-6 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

t,
yte
t,

s in
forms

ion

y
re the

tion.

nd

r.
n

r to

00ProRef.book : 06chap01.fm Page 7 Monday, March 9, 1998 3:23 PM
For example, the code

int x;

declares a 2-byte integer in a 16-bit compiler such as LabWindows for DOS. In contras
a 32-bit compiler such as LabWindows/CVI handles this code as a declaration of a 4-b
integer. In most cases, this does not cause a problem and the conversion is transparen
because functions that use 2-byte integers in LabWindows for DOS use 4-byte integer
LabWindows/CVI. However, this conversion does cause a problem when a program per
one of the following actions:

• Passes an array of 16-bit integers to a GPIB, VXI, or Data Acquisition (DAQ) funct

If you use a 32-bit int array to receive a set of 16-bit integers from a device,
LabWindows/CVI packs two 16-bit values into each element of the 32-bit array. An
attempt to access the array on an element-by-element basis does not work. Decla
array as short instead, and make sure any type specifiers that refer to it have the [b2]
modifier when you pass them as an argument to a Formatting and I/O Library func

• Uses an int variable in a way that requires it to be a 2-byte integer

For example, if you pass an int argument by address to a function in the Formatting a
I/O Library, such as a Scan source or a Scan /Fmt target, and it matches a %d[b2] or
%i[b2] specifier, it does not work correctly. Remove the [b2] modifier, or declare the
variable as short .

Conversely, if you pass a short argument by address and it matches a %d or %i specifier
without the [b2] modifier, it does not work correctly. Add the [b2] modifier.

Note The default for %d is 2 bytes on a 16-bit compiler and 4 bytes on a 32-bit compile
In the same way, the default for int is 2 bytes on a 16-bit compiler, and 4 bytes o
a 32-bit compiler. This is why you do not have to make any modifications if the
specifier for a variable of type int is %d without the bn modifier.

All pointers are 32-bit offsets. LabWindows/CVI does not use the far pointers that have both
a segment selector and an offset, except in 16-bit Windows DLLs under Windows 3.1.
LabWindows/CVI for Windows 3.1 calls 16-bit DLLs through a special interface
LabWindows/CVI generates from the header file for the DLL. For more information, refe
the Using 32-Bit Watcom Compiled Modules under Windows 3.1 and 16-Bit Windows DLLs
sections in Chapter 4, Windows 3.1 Compiler/Linker Issues.
© National Instruments Corporation 1-7 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

n. If
 your

ise
ser

uses

 have

ts to
. The

sing
ncing

ion,
d in the

ction,
 invalid

 is

00ProRef.book : 06chap01.fm Page 8 Monday, March 9, 1998 3:23 PM
Debugging Levels
You can compile the source modules in your application to include debugging informatio
you do so, you can use breakpoints and view or modify variables and expressions while
program is suspended. You set the debugging level by selecting Options»Run Options in the
Project window. Refer to the Run Options section in Chapter 3, Project Window, of the
LabWindows/CVI User Manual for information on debugging levels.

User Protection
User protection detects invalid program behavior that LabWindows/CVI cannot otherw
detect during compilation. LabWindows/CVI reports such invalid program behavior as u
protection errors. When you set the debugging level to Standard or Extended,
LabWindows/CVI maintains extra information for arrays, structures, and pointers, and
the information at run time to determine the validity of addresses.

Two groups of user protection errors exist based upon two characteristics: severity level and
error category. In each case, the ANSI C standard states that programs with these errors
undefined behavior. The two severity levels are as follows:

• Non-Fatal errors include expressions that are likely to cause problems, but do not
directly affect program execution. Examples include bad pointer arithmetic, attemp
free pointers more than once, and comparisons of pointers to different array objects
expression is invalid and its behavior is undefined, but execution can continue.

• Fatal errors include expressions that LabWindows/CVI cannot execute without cau
major problems, such as causing a general protection fault. For example, derefere
an invalid pointer value is a fatal error.

Error categories include pointer protection, dynamic memory protection, library protect
and general protection errors. Each of these categories includes subgroups as describe
following sections.

Array Indexing and Pointer Protection Errors
The pointer protection errors catch invalid operations with pointers and arrays. In this se
these errors are grouped by the type of expression that causes the error or the type of
pointer involved.

Pointer Arithmetic (Non-Fatal)
Pointer arithmetic expressions involve a pointer sub-expression and an integer
sub-expression. LabWindows/CVI generates an error when the pointer sub-expression
LabWindows/CVI Programmer Reference Manual 1-8 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

inter

 to
es

 the

ult or
g:

 start,

00ProRef.book : 06chap01.fm Page 9 Monday, March 9, 1998 3:23 PM
invalid or when the arithmetic operation results in an invalid pointer expression. The
following user protection errors involve pointer arithmetic:

• Pointer arithmetic involving uninitialized pointer

• Pointer arithmetic involving null pointer

• Out-of-bounds pointer arithmetic (calculation of an array address that results in a po
value either before the start, or past the end of the array)

• Pointer arithmetic involving pointer to freed memory

• Pointer arithmetic involving invalid pointer

• Pointer arithmetic involving address of non-array object

• Pointer arithmetic involving pointer to function

• Array index too large

• Negative array index

Pointer Assignment (Non-Fatal)
LabWindows/CVI generates pointer assignment errors when you assign invalid values
pointer variables. These warnings can help determine when a particular pointer becom
invalid. The following user protection errors involve pointer assignment:

• Assignment of uninitialized pointer value

• Assignment of out-of-bounds pointer expression (assignment of an address before
start, or past the last element, of an array)

• Assignment of pointer to freed memory

• Assignment of invalid pointer expression

Pointer Dereference Errors (Fatal)
Dereferencing of invalid pointer values is a fatal error because it can cause a memory fa
other serious problem. The following user protection errors involve pointer dereferencin

• Dereference of uninitialized pointer

• Dereference of null pointer

• Dereference of out-of-bounds pointer (dereference using a pointer value before the
or past the end, of an array)

• Dereference of pointer to freed memory

• Dereference of invalid pointer expression

• Dereference of data pointer for use as a function

• Dereference of function pointer for use as data
© National Instruments Corporation 1-9 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

on

n

o type

ct for

00ProRef.book : 06chap01.fm Page 10 Monday, March 9, 1998 3:23 PM
• Dereference of a pointer to an n-byte type where less than n bytes exist in the object

• Dereference of unaligned pointer (UNIX only)

Pointer Comparison (Non-Fatal)
LabWindows/CVI generates pointer comparison errors for erroneous pointer comparis
expressions. The following user protection errors involve pointer comparison:

• Comparison involving uninitialized pointer

• Comparison involving null pointer

• Comparison involving invalid pointer

• Comparison of pointers to different objects

• Pointer comparison involving address of non-array object

• Comparison of pointers to freed memory

Pointer Subtraction (Non-Fatal)
LabWindows/CVI generates pointer subtraction errors for erroneous pointer subtractio
expressions. The following user protection errors involve pointer subtraction:

• Subtraction involving uninitialized pointer

• Subtraction involving null pointer

• Subtraction involving invalid pointer

• Subtraction of pointers to different objects

• Pointer subtraction involving address of non-array object

• Subtraction of pointers to freed memory

Pointer Casting (Non-Fatal)
LabWindows/CVI generates a pointer casting error when you cast a pointer expression t
(AnyType *) and not enough space exists for an object of type AnyType at the location the
pointer expression specifies. This occurs only when casting a dynamically allocated obje
the first time, such as with the code (double *) malloc(1) . In this example,
LabWindows/CVI reports the following error: Not enough space for casting

expression to 'pointer to double' .
LabWindows/CVI Programmer Reference Manual 1-10 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

ult of
:

tion,
hen
mic
en it

 with

n.

00ProRef.book : 06chap01.fm Page 11 Monday, March 9, 1998 3:23 PM
Dynamic Memory Protection Errors
Dynamic memory protection errors report illegal operations with dynamic memory and
corrupted dynamic memory during allocation and deallocation.

Memory Deallocation (Non-Fatal)
LabWindows/CVI generates memory deallocation errors when the pointer is not the res
a memory allocation. The following user protection errors involve memory deallocation

• Attempt to free uninitialized pointer

• Attempt to free pointer to freed memory

• Attempt to free invalid pointer expression

• Attempt to free pointer not allocated with malloc or calloc

Memory Corruption (Fatal)
LabWindows/CVI generates memory corruption errors when a memory
allocation/deallocation detects corrupted memory. During each dynamic memory opera
LabWindows/CVI verifies the integrity of the memory blocks it uses in the operation. W
you set the Debugging Level to Extended, LabWindows/CVI thoroughly checks all dyna
memory on each memory operation. LabWindows/CVI generates the following error wh
discovers a problem: Dynamic memory is corrupt .

General Protection Errors
LabWindows/CVI also checks for stack overflow and missing return values:

• Stack overflow (fatal)

• Missing return value (non-fatal)

The missing return value error means that a non-void function (one you do not declare
void return type) returned, but did not returned a value.

Library Protection Errors
Library functions sometimes generate errors when they receive invalid arguments.
LabWindows/CVI error checking is sensitive to the requirements of each library functio
The following errors involve library protection:

• Null pointer argument to library function

• Uninitialized pointer argument to library function

• Passing a pointer to freed memory to a library function

• Array argument too small

• Passing by reference a scalar argument to a library function that expects an array
© National Instruments Corporation 1-11 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

 the

e of
 return

 not

nters

en a
 the

t

tic

00ProRef.book : 06chap01.fm Page 12 Monday, March 9, 1998 3:23 PM
• Missing terminating null in string argument

• Passing a string to a library function that expects a character reference parameter

LabWindows/CVI library functions return error codes in a variety of cases. If you enable
Break on Library Errors option in the Run Options command in the Options menu of the
Project window, LabWindows/CVI suspends execution after a library function returns on
these errors. A message appears that displays the name of the function and either the
value or a string that explains why the function failed.

Disabling User Protection
Occasionally, you might want to disable user protection to avoid run-time errors that do
cause problems in your program.

Disabling Protection Errors at Run-Time
You can use the SetBreakOnProtectionErrors function in the Utility Library to
programmatically control whether LabWindows/CVI suspends execution when it encou
a protection error. This function does not affect the Break on Library Errors feature.

Disabling Library Errors at Run-Time
The Break on Library Errors option in the Run Options command in the Options menu of
the Project window lets you choose whether LabWindows/CVI suspends execution wh
library function returns an error code. The option takes effect when you start executing
project. You can override the initial setting in your program by using the
SetBreakOnLibraryErrors function in the Utility Library. Use of this function does no
affect the reporting of other types of library protection errors.

Disabling Protection for Individual Pointer
You can disable pointer checking for a particular pointer by casting it first to an arithme
type and then back to its original type, as shown in the following macro:

#define DISABLE_RUNTIME_CHECKING(ptr)((ptr) = (void *)

((unsigned)(ptr)))

{

char *charPointer;

/* run-time checking is performed for charPointer before this

 line */

DISABLE_RUNTIME_CHECKING(charPointer);

/* no run-time checking is performed for charPointer after this

 line */

}

LabWindows/CVI Programmer Reference Manual 1-12 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

us
u then

 then

 in

. At
f

de.
tion,
d
hin a
h the

u

00ProRef.book : 06chap01.fm Page 13 Monday, March 9, 1998 3:23 PM
This macro could be useful in the following situation: LabWindows/CVI reports erroneo
run-time errors because you set a pointer to dynamic memory in a source module and yo
resize it in an object module. The following steps describe how this error occurs:

1. You declare a pointer in a source module you compile with debugging enabled. You
assign to the pointer an address that malloc or calloc returns:

AnyType *ptr;

ptr = malloc(N);

2. You reallocate the pointer in an object module so that it points to the same location
memory as before. This might occur if you call the realloc function or free the pointer
and then reassign it to memory that you allocate with malloc :

ptr = realloc(ptr, M); /* M > N */

or

free(ptr);

ptr = malloc(M);

3. You use the same pointer in a source module you compile with debugging enabled
this point, LabWindows/CVI still expects the pointer to point to a block of memory o
the original size (N) .

(ptr+(M-1)) / This generates a fatal run-time error, */

/* even though it is a legal expression. */

To prevent this error, use the DISABLE_RUNTIME_CHECKING macro to disable checking for
the pointer after you allocate memory for it in the source module:

ptr = malloc(N);

DISABLE_RUNTIME_CHECKING(ptr);

Disabling Library Protection Errors for Functions
You can disable or enable library protection errors by placing pragmas in the source co
LabWindows/CVI ignores these pragmas when you compile without debugging informa
that is, if the debugging level is None. For example, the following two pragmas enable an
disable library checking for all the function declarations that occur after the pragma wit
header or source file. The pragmas affect only the functions declared in the file in whic
pragmas occur. These pragmas do not affect nested include files.

#pragma EnableLibraryRuntimeChecking

#pragma DisableLibraryRuntimeChecking

The following pragmas enable and disable library checking for a particular function. Yo
must declare the function before the occurrence of the pragma.

#pragma EnableFunctionRuntimeChecking function
#pragma DisableFunctionRuntimeChecking function
© National Instruments Corporation 1-13 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

on
of the

on,

an
pe that

er data
 each
or the

ing

00ProRef.book : 06chap01.fm Page 14 Monday, March 9, 1998 3:23 PM
These two pragmas enable and disable run-time checking for a particular library functi
throughout the module in which they appear. You can use them to override the effects
EnableLibraryRuntimeChecking and DisableLibraryRuntimeChecking pragmas
for individual functions. If both of these pragmas occur in a module for the same functi
LabWindows/CVI uses only the last occurrence.

Note These pragmas affect all protection, including run-time checking of function
arguments, for all calls to a specific library function. To disable breaking on
errors for a particular call to a library function, use the Utility Library function
SetBreakOnLibraryErrors . To disable the run-time checking of argument
expressions for a particular call to a library function, use the Utility Library
function SetBreakOnProtectionErrors .

Note You cannot use pragmas to disable protection for the functions in the
statically linked libraries including User Interface, RS-232, TCP, DDE,
Formatting and I/O, Utility, X Property, and ANSI C libraries unless you place the
DisableLibraryRuntimeChecking pragma at the top of the library header file.

Details of User Protection

Pointer Casting
A cast expression consists of a left parenthesis, a type name, a right parenthesis, and
operand expression. The cast causes the compiler to convert the operand value to the ty
appears within the parenthesis.

C programmers occasionally have to cast a pointer to one data type to a pointer to anoth
type. Because LabWindows/CVI does not restructure the user protection information for
cast expression, certain types of cast expressions implicitly disable run-time checking f
pointer value. In particular, casting a pointer expression to the following types disables
run-time checking on the resulting value:

• Pointer to a pointer: (AnyType **) PointerExpression

• Pointer to a structure:(struct AnyStruct *) PointerExpression

• Pointer to an array:(AnyType (*)[]) PointerExpression

• Any non-pointer type:(unsigned) PointerExpression ,

(int) PointerExpression , and so on

Note An exception exists. Casts that you apply implicitly or explicitly to the void *
values you obtain from malloc or calloc do not disable user protection.

Casting a pointer to one arithmetic type to a pointer to a different one, such as (int *) ,
(unsigned *) , (short *) , and so on, does not affect run-time checking on the result
pointer, nor does casting a pointer to a void pointer (void *) .
LabWindows/CVI Programmer Reference Manual 1-14 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

r
g

00ProRef.book : 06chap01.fm Page 15 Monday, March 9, 1998 3:23 PM
Dynamic Memory
LabWindows/CVI provides run-time error checking for pointers and arrays in dynamically
allocated memory.

You can use the ANSI C library functions malloc or calloc to allocate dynamic memory.
These functions return void * values that you must cast to some other type before the
memory can be used. During program execution, LabWindows/CVI uses the first such cast
on the return value of each call to these functions to determine the type of the object that will
be stored in the dynamic memory. Subsequent casts to different types can disable checking on
the dynamic data, as explained in the Pointer Casting discussion in this section.

You can use the re alloc function to resize dynamically allocated memory. This function
increases or decreases the size of the object associated with the dynamic memory.
LabWindows/CVI adjusts the user protection information accordingly.

Avoid Unassigned Dynamic Allocation in Function Parameters

The LabWindows/CVI run-time error checking mechanism dynamically allocates data to
keep track of pointers that you dynamically allocate in your program. When you no longe
use the pointers, LabWindows/CVI uses garbage collection to deallocate its correspondin
dynamic memory.

A case exists where the garbage collection fails to retrieve all the memory it allocated. This
occurs when you pass the return value of one function to another function, the return value is
a pointer to dynamically allocated memory, and you do not assign the pointer to a variable in
the argument expression. The following is an example:

MyFunc (1, 2, mallo c(7));

This call passes the return value from mal l oc to MyFunc but does not assign it to a variable.
If you make this call repeatedly in your program with run-time checking enabled, you lose a
small amount of memory each time.

Change the code as follows to avoid this problem.

voi d *p;

MyFunc (1, 2, p = m alloc(7));

The following code also works and uses better programming style.

voi d *p;

p = malloc(7);

MyFunc (1, 2, p);
© National Instruments Corporation 1-15 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

rs
ust be

n

cal

00ProRef.book : 06chap01.fm Page 16 Monday, March 9, 1998 3:23 PM
Library Functions
The LabWindows/CVI library functions that take pointer arguments or that return pointe
incorporate run-time checking for those arguments and return values. However, you m
careful when passing arguments to library functions that have void * parameters, such as
GetCtrlAttribute and GetCtrlVal in the User Interface Library and memcpy and
memset in the ANSI C library. If you use a void * cast when you pass an argument to a
function that expects a variably typed argument, you disable run-time checking for that
argument. Some examples follow:

{

int value;

GetCtrlVal(panel, ctrl, &value); /* CORRECT */

GetCtrlVal(panel, ctrl, (void *)&value);/* INCORRECT */

}

{

char *names[N], *namesCopy[N];

memcpy(namesCopy, names, sizeof (names));/* CORRECT */

memcpy((void *)namesCopy, (void *)names, sizeof names);

/* INCORRECT */

}

Unions

LabWindows/CVI performs only minimal checks for union type variables. If a union
contains pointers, arrays, or structs, LabWindows/CVI does not maintain user protectio
information for those objects.

Stack Size
Your program uses the stack for passing function parameters and storing automatic lo
variables. You can set the maximum stack size by selecting the Options»Run Options in the
Project window. Table 1-3 shows the stack size ranges LabWindows/CVI supports.

Table 1-3. Stack Size Ranges for LabWindows/CVI

Platform Minimum Default Maximum

Windows 3.1 4 KB 40 KB 40 KB

Windows 95/NT 100 KB 250 KB 1 MB

Solaris 1 for Sun 100 KB 250 KB 5 MB

Solaris 2 for Sun 100 KB 250 KB 5 MB
LabWindows/CVI Programmer Reference Manual 1-16 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

B

for

00ProRef.book : 06chap01.fm Page 17 Monday, March 9, 1998 3:23 PM
Note For LabWindows/CVI for Windows 3.1, the actual stack size approaches 64 K
when you set the Debugging level to None.

Include Paths
The Include Paths command in the Options menu of the Project window specifies the
directory search path for include files. The Include Paths dialog box has two lists, one
include paths specific to the project, and one for paths not specific to the project.

When you install VXIplug&play instrument drivers, the installation program places the
include files for the drivers in a specific VXIplug&play include directory. LabWindows/CVI
also searches that directory for include files.

Include Path Search Precedence
LabWindows/CVI searches for include files in the following locations and in the
following order:

1. Project list

2. Project-specific include paths

3. Non-project-specific include paths

4. The paths listed in the Instrument Directories dialog box

5. The subdirectories under the cvi\toolslib directory

6. The cvi\instr directory

7. The cvi\include directory

8. The cvi\include\ansi directory

9. The VXIplug&play include directory

10. The cvi\sdk\include directory (Windows 95/NT only)
© National Instruments Corporation 1-17 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 2-1 LabWindows/CVI Programmer

00ProRef.book : 06chap02.fm Page 1 Monday, March 9, 1998 3:23 PM
2

ules in

led
piled

e

es

/NT,
ate
Using Loadable
Compiled Modules

This chapter describes the advantages and disadvantages of using compiled code mod
your application. It also describes the kinds of compiled modules available in
LabWindows/CVI and includes programming guidelines for modules you generate with
external compilers.

Refer to Chapter 3, Windows 95/NT Compiler/Linker Issues, Chapter 4, Windows 3.1
Compiler/Linker Issues, or Chapter 5, UNIX Compiler/Linker Issues, in this manual for more
information on platform-specific programming guidelines for modules that external
compilers generate.

About Loadable Compiled Modules
Several methods exist for using compiled modules in LabWindows/CVI. You can load
compiled modules directly into the LabWindows/CVI environment as instrument driver
programs or as user libraries, so they are accessible to any project. You can list compi
modules in your project, so they are accessible only within that project. You can use com
modules dynamically in your program with LoadExternalModule , RunExternalModule ,
and UnloadExternalModule . Any compiled module you use in LabWindows/CVI must b
in one of the following forms:

• A .obj file on the PC, or a .o file under UNIX, that contains one object module

• A .lib file on the PC, or a .a file under UNIX, that contains one or more object modul

• A .dll file that contains a Windows DLL (Windows only)

You can create any of these compiled modules in LabWindows/CVI under Windows 95
or using a compatible external compiler. Under Windows 3.1, LabWindows/CVI can cre
only .obj files. Under UNIX, LabWindows/CVI can create only .o files.
Reference Manual

Chapter 2 Using Loadable Compiled Modules

e

00ProRef.book : 06chap02.fm Page 2 Monday, March 9, 1998 3:23 PM
Advantages and Disadvantages of Using Loadable Compiled Modules
in LabWindows/CVI

Using compiled modules in LabWindows/CVI has the following advantages:

• Compiled modules run faster than source modules. Compiled modules do not contain the
debugging and user protection code LabWindows/CVI generates when it compiles
source modules. Compiled modules you generate in external compilers can run faster
because of optimization.

• LabWindows/CVI recompiles the source modules in a project each time you open th
project. Also, if an instrument driver program file is a source module, LabWindows/CVI
recompiles it each time you load the instrument driver. LabWindows/CVI does not
recompile compiled modules when you open a project or load an instrument driver.

• In standalone executables, you can dynamically load compiled modules but not source
modules.

• You can install compiled modules, but not source modules, into the Library menu.

• You can provide libraries for other developers without giving them access to your source
code.

Using compiled modules in LabWindows/CVI has the following disadvantages:

• You cannot debug compiled modules. Because compiled modules do not contain any
debugging information, you cannot set breakpoints or view variable values.

• Compiled modules do not include run-time error checking or user protection.

Using a Loadable Compiled Module as an Instrument Driver
Program File

An instrument driver is a set of high-level functions with graphical function panels to make
programming easier. It encapsulates many low-level operations, such as data formatting and
GPIB, RS-232, and VXI communication, into intuitive, high-level functions. An instrument
driver usually controls a physical instrument, but it also can be a software utility. The Using
Instrument Drivers and Instrument Menu sections of Chapter 3, Project Window, of the
LabWindows/CVI User Manual describe how to use instrument drivers.

To develop and debug an instrument driver, load its program file into LabWindows/CVI as a
source file. After you finish debugging it, you can compile the program file into an object file
or a Windows 95/NT DLL. The next time you load the instrument driver, LabWindows/CVI
loads the compiled module, which loads and runs faster that the source module.

Refer to the LabWindows/CVI Instrument Driver Developers Guide for information on how
to create an instrument driver.
LabWindows/CVI Programmer Reference Manual 2-2 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

ents

the

es
ad

d.

pear

rs or

reate
ary

.

/CVI
e in
dow.

00ProRef.book : 06chap02.fm Page 3 Monday, March 9, 1998 3:23 PM
If the instrument driver program file is a compiled module, it must adhere to the requirem
outlined for each operating system in Chapter 3, Windows 95/NT Compiler/Linker Issues,
Chapter 4, Windows 3.1 Compiler/Linker Issues, and Chapter 5, UNIX Compiler/Linker
Issues, of this manual.

Using a Loadable Compiled Module as a User Library
You can install your own libraries into the Library menu. A user library has the same form
as an instrument driver. You can load as a user library anything that you can load into
Instrument menu, provided the program is in compiled form. Refer to the Using Instrument
Drivers and the Instrument Menu sections of Chapter 3, Project Window, of the
LabWindows/CVI User Manual for more information. The main difference between modul
you load as instrument drivers and those you load as user libraries is that you can unlo
instrument drivers using the Unload command in the Instrument menu, but you cannot
unload user libraries. You cannot edit and recompile user libraries while they are loade

Install user libraries by selecting the Library Options command in the Project Options
menu. The next time you run LabWindows/CVI, the libraries load automatically and ap
at the bottom of the Library menu.

You can develop a user library module to provide support functions for instrument drive
any other modules in your project. By installing a module through the Library Options
command, you ensure that the library is always available in the LabWindows/CVI
development environment. If you do not want to develop function panels for the library, c
a .fp file without any classes or functions. In that case, LabWindows/CVI loads the libr
at startup but does not include the library name in the Library menu.

User libraries must adhere to the requirements outlined for the target operating system
Chapter 3, Windows 95/NT Compiler/Linker Issues, Chapter 4, Windows 3.1
Compiler/Linker Issues, and Chapter 5, UNIX Compiler/Linker Issues, of this manual, discuss
operating system requirements.

Using a Loadable Compiled Module in the Project List
You can include compiled modules directly in the project list.

Note To use a DLL in your project under Windows 95/NT, you must include the DLL
import library (.lib) file in the project list rather than the DLL.

Even when you include a source module in the project list, you can instruct LabWindows
to create an object module on disk when it compiles the file instead of debuggable cod
memory. To do this, double click in the O column next to the source file in the Project win
© National Instruments Corporation 2-3 LabWindows/CVI Programmer Reference Manual

Chapter 2 Using Loadable Compiled Modules

urce

he

ends,
u must
nt.
 of

n one
er

00ProRef.book : 06chap02.fm Page 4 Monday, March 9, 1998 3:23 PM
Compiled modules must adhere to the requirements outlined for the target operating
system. Chapter 3, Windows 95/NT Compiler/Linker Issues, Chapter 4, Windows 3.1
Compiler/Linker Issues, and Chapter 5, UNIX Compiler/Linker Issues, of this manual, discuss
operating system requirements.

Using a Loadable Compiled Module as an External Module
You can load a compiled module dynamically from your program. A module you load
dynamically is called an external module. You can load, execute, and unload this external
module programmatically using LoadExternalModule , GetExternalModuleAddr , and
UnloadExternalModule . Refer to Chapter 8, Utility Library, of the LabWindows/CVI
Standard Libraries Reference Manual for more information on using these functions.

While you develop and debug the external module, you can list it in the project as a so
file. After you finish debugging the module, you can compile it into an object file or a
Windows 95/NT DLL. External modules must adhere to the requirements outlined for t
target operating system. Chapter 3, Windows 95/NT Compiler/Linker Issues, Chapter 4,
Windows 3.1 Compiler/Linker Issues, and Chapter 5, UNIX Compiler/Linker Issues, of this
manual, discuss operating system requirements.

Notification of Changes in Run State
You might have to notify certain compiled modules whenever your program starts, susp
continues, or stops. For example, if a compiled module has asynchronous callbacks, yo
prevent the callbacks from executing when program execution suspends at a breakpoi
LabWindows/CVI has a callback mechanism you can use to inform a compiled module
changes in the program status.

To notify a compiled module of changes in the run state, add a function with the name
__RunStateChangeCallback to the compiled module. LabWindows/CVI automatically
installs the callback for you.

The run state change callback must be in a compiled file, not in a source file. More tha
compiled module can contain functions with this name, because LabWindows/CVI nev
enters it into the global name space. The prototype for the callback is as follows:

void CVICALLBACK __RunStateChangeCallback(int action)

libsupp.h defines the actions in the following enumerated type:

enum {

 kRunState_Start,

 kRunState_Suspend,

 kRunState_Resume,

 kRunState_AbortingExecution,

 kRunState_Stop,
LabWindows/CVI Programmer Reference Manual 2-4 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

00ProRef.book : 06chap02.fm Page 5 Monday, March 9, 1998 3:23 PM
 kRunState_EnableCallbacks,

 kRunState_DisableCallbacks

};

The following examples show typical program state changes.

Example 1
kRunState_Start

kRunState_EnableCallbacks

/* user program execution begins */

.

.

.

/* a breakpoint or run-time error occurs, or user presses the

 Terminate Execution key combination */

kRunState_DisableCallbacks

kRunState_Suspend

/* program execution suspends; CVI environment resumes */

.

.

.

/* user requests the execution be resumed, through the "Continue",

 "Step Over", etc., commands */

kRunState_Resume

kRunState_EnableCallbacks

/* user program execution resumes */

.

.

.

/* user program execution completes normally */

kRunState_DisableCallbacks

kRunState_Stop
© National Instruments Corporation 2-5 LabWindows/CVI Programmer Reference Manual

Chapter 2 Using Loadable Compiled Modules

l
e

build

de a
ight

00ProRef.book : 06chap02.fm Page 6 Monday, March 9, 1998 3:23 PM
Example 2
kRunState_Start

kRunState_EnableCallbacks

/* user program execution begins */

.

.

.

/* a breakpoint or run-time error occurs, or user presses the

 Terminate Execution key combination */

kRunState_DisableCallbacks

kRunState_Suspend

/* program execution suspends; CVI environment resumes */

.

.

.

/* user selects the Terminate Execution command */

kRunState_DisableCallbacks /* even though callbacks already

 disabled */

kRunState_AbortingExecution

/* long jump out of user program */

kRunState_DisableCallbacks /* even though callbacks already

 disabled */

kRunState_Stop

Note A Resume notification does not always follow a Suspend notification. A Stop
notification can follow a Suspend notification without an intervening Resume
notification.

Note Run state change callbacks do not work if you link your program in an externa
compiler. Also, external compilers report link errors if you have multiple run stat
change callbacks.

Using Run State Change Callbacks in a DLL
You can include one or more run state change callbacks in a DLL. To do so, you must
the DLL in the LabWindows/CVI development environment, and each run state change
callback must be in a separate object or static library file in the DLL project. If you inclu
run state change callback in a DLL, or in an object or static library file that another user m
include in a DLL, take special care in two areas:

• Use caution when you call into other DLLs in response to a kRunState_Stop message.
When you use your DLL in a standalone executable, the DLL receives the
kRunState_Stop message when the executable terminates. The order in which
LabWindows/CVI Programmer Reference Manual 2-6 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

, the
ault.

es
nly if

nge

ion in
nse

oint

rough

y with

nt is
e must
 this

he
e

00ProRef.book : 06chap02.fm Page 7 Monday, March 9, 1998 3:23 PM
Windows 95/NT unloads DLLs at process termination is not well-defined. Therefore
DLL you call into might no longer be loaded. This can cause a general protection f

Nevertheless, when you use your DLL in a program in the LabWindows/CVI
development environment, it is often necessary to call into DLLs to release resourc
after each run. To solve this dilemma, use conditional code to release resources o
you are running in the LabWindows/CVI development environment. An example
follows.

#include <utility.h>

switch (runState)

{

case kRunState_Stop:

if (! InStandaloneExecutable())

{ /* call into other DLLs to release resources */ }

/* release resources, including unloading DLLs */

break;

}

It is always safe to call into the LabWindows/CVI Run-time Engine in a run state cha
callback.

• If your DLL uses global variables that can become stale after each program execut
the LabWindows/CVI development environment, re-initialize the variables in respo
to the kRunState_Start or kRunState_Stop message. For example, memory that
you allocate using LabWindows/CVI ANSI C functions such as malloc or calloc is no
longer valid when you restart your program. If your DLL has global variables that p
to allocated memory, set those pointers to NULL in response to the kRunState_Start
or kRunState_Stop message.

Compiled Modules that Contain Asynchronous Callbacks
A compiled module can call a source code function asynchronously. This can happen th
interrupts or signals. In Windows 95/NT, the compiled module can call the source code
function from a thread other than the main thread. The call takes place asynchronousl
respect to the normal execution of the source code in your program.

The execution and debugging system in the LabWindows/CVI development environme
not prepared to handle this asynchronous execution. Consequently, the compiled modul
announce to LabWindows/CVI that it is calling asynchronously into source code. It does
by calling EnterAsyncCallback before calling the function, and calling

ExitAsyncCallback after calling the function. EnterAsyncCallback and
ExitAsyncCallback have one parameter, which is a pointer to a buffer of size
ASYNC_CALLBACK_ENV_SIZE. You must pass the same buffer into ExitAsyncCallback
that you passed into EnterAsyncCallback because the buffer stores state information. T
definition of ASYNC_CALLBACK_ENV_SIZE and the prototypes for these two functions ar
in libsupp.h.
© National Instruments Corporation 2-7 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 3-1 LabWindows/CVI Programmer

00ProRef.book : 06chap03.fm Page 1 Monday, March 9, 1998 3:23 PM
3

e

al

to
ate
ay,
Windows 95/NT
Compiler/Linker Issues

This chapter describes the different kinds of compiled modules available under
LabWindows/CVI for Windows 95/NT and includes programming guidelines
for modules you generate with external compilers.

Under Windows 95/NT, the LabWindows/CVI compiler is compatible with four external
32-bit compilers: Microsoft Visual C/C++, Borland C/C++, Watcom C/C++, and
Symantec C/C++. This manual refers to the four compilers as the compatible external
compilers.

In LabWindows/CVI under Windows 95/NT, you can do the following:

• Load 32-bit DLLs, through the standard import library mechanism

• Create 32-bit DLLs and DLL import libraries

• Create library files and object files

• Call the LabWindows/CVI libraries from executables or DLLs created with any of th
four compatible external compilers

• Create object files, library files, and DLL import libraries that the compatible extern
compilers can use

• Load object files, library files, and DLL import libraries created with any of the four
compatible external compilers

• Call Windows Software Development Kit (SDK) functions

This chapter discusses these capabilities.

Loading 32-Bit DLLs under Windows 95/NT
Under Windows 95/NT, LabWindows/CVI can load 32-bit DLLs. LabWindows/CVI links
DLLs through the standard 32-bit DLL import libraries that you generate when you cre
32-bit DLLs with any of the compilers. Because LabWindows/CVI links to DLLs in this w
you cannot specify a DLL file directly in your project. You must specify the DLL import
library file instead.
Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

ent
nd

LL,

or

t

 an

ou

en
n
nge

00ProRef.book : 06chap03.fm Page 2 Monday, March 9, 1998 3:23 PM
DLLs for Instrument Drivers and User Libraries
Under Windows 95/NT, LabWindows/CVI does not directly associate DLLs with instrum
drivers or user libraries. However, LabWindows/CVI can associate instrument drivers a
user libraries with DLL import libraries. Each DLL must have a DLL import library (.lib)
file. In general, if the program for an instrument driver or user library is in the form of a D
you must place the DLL import library in the same directory as the function panel (.fp) file.
The DLL import library specifies the name of the DLL that LabWindows/CVI searches f
using the standard Windows DLL search algorithm.

LabWindows/CVI makes an exception to facilitate using VXIplug&play instrument driver
DLLs. When you install a VXIplug&play instrument driver, the installation program
does not place the DLL import library in the same directory as the .fp file. If a .fp file
is in the VXIplug&play directory, LabWindows/CVI searches for an import library in
the VXIplug&play library directory before it looks for a program file in the directory of
the .fp file, unless you list the program file in the project.

Using The LoadExternalModule Function
When you use the LoadExternalModule function to load a DLL at run time, you must
specify the pathname of the DLL import library, not the name of the DLL.

Link Errors when Using DLL Import Libraries
A DLL import library must not contain any references to symbols that the DLL does no
export. If it does, LabWindows/CVI reports a link error. If you load the DLL using
LoadExternalModule , the GetExternalModuleAddr function reports an undefined
references (–5) error. You can solve this problem by using LabWindows/CVI to generate
import library. Refer to the Generating an Import Library discussion later in this section.

DLL Path (.pth) Files Not Supported
The DLL import library contains the filename of the DLL. LabWindows/CVI uses the
standard Windows DLL search algorithm to find the DLL. Thus, DLL path (.pth)
files do not work under Windows 95/NT.

16-Bit DLLs Not Supported
LabWindows/CVI for Windows 95/NT does not load 16-bit DLLs. If you want to do this, y
must obtain a 32-to-16-bit thunking DLL and a 32-bit DLL import library.

Run State Change Callbacks in DLLs
You can include run state change callbacks in DLLs you build in LabWindows/CVI. Wh
running a program in LabWindows/CVI, a run state change callback receives notificatio
when the program starts, suspends, resumes, and stops. If you include a run state cha
LabWindows/CVI Programmer Reference Manual 3-2 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

not

e

tes. If

tion
r

es
ight

ction,

00ProRef.book : 06chap03.fm Page 3 Monday, March 9, 1998 3:23 PM
callback in a DLL, you must take special care. Refer to the Notification of Changes in Run
State section in Chapter 2, Using Loadable Compiled Modules, of this manual, for a detailed
discussion of run state change callbacks.

DllMain
Each DLL can have a DllMain function, except that the Borland compiler uses
DllEntryPoint as the name. The operating system calls the DllMain function with various
messages. To generate the template for a DllMain function, use the Insert Constructs
command in the Edit menu of a Source window.

Use caution when inserting code in the PROCESS_ATTACH and PROCESS_DETACH cases. In
particular, avoid calling into other DLLs in these two cases. The order in which
Windows 95/NT initializes DLLs at startup and unloads them at process termination is
well-defined. Thus, the DLLs you want to call might not be in memory when your DllMain
receives the PROCESS_ATTACH or PROCESS_DETACH message.

It is always safe to call into the LabWindows/CVI Run-time Engine in a run state chang
callback, as long as you do so before calling CloseCVIRTE .

Releasing Resources when a DLL Unloads
When a program terminates, the operating system disposes resources your DLL alloca
your DLL remains loaded throughout program execution, it does not need to dispose
resources explicitly when the system unloads it at program termination. However, if the
program unloads your DLL during program execution, it is a good idea for your DLL to
dispose of any resources it allocates. It can release resources in the DllMain function in
response to the PROCESS_DETACH message. The DLL can also release resources in a func
that it registers with the ANSI C atexit function. The system calls the function you registe
when the DLL receives the PROCESS_DETACH message.

If your DLL calls into the LabWindows/CVI Run-time Engine DLL, it can allocate resourc
such as user interface panels. If a program unloads your DLL during execution, you m
want to dispose these resources by calling functions such as DisposePanel in the
LabWindows/CVI Run-time Engine. On the other hand, as explained in the previous se
it is generally unsafe to call into other DLLs in response to the PROCESS_DETACH message.

To solve this dilemma, you can use the CVIRTEHasBeenDetached function in the
Utility Library. It is always safe to call the CVIRTEHasBeenDetached function.
CVIRTEHasBeenDetached returns FALSE until the main Run-time Engine DLL,
cvirte.dll , receives the PROCESS_DETACH message. Consequently, if
CVIRTEHasBeenDetached returns FALSE, your DLL can safely call functions in
LabWindows/CVI Run-time Engine to release resources.
© National Instruments Corporation 3-3 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

LL
e an
nt to
 file

le a

oes
only

f a
s

am.
tion
s,

ith

00ProRef.book : 06chap03.fm Page 4 Monday, March 9, 1998 3:23 PM
Note cvirte.dll contains the User Interface, Utility, Formatting and I/O, RS-232,
ANSI C, TCP, and DDE Libraries.

Generating an Import Library
If you do not have a DLL import library or if the one you have contains references the D
does not export, you can generate an import library in LabWindows/CVI. You must hav
include file that contains the declarations of all the functions and global variables you wa
access from the DLL. The calling conventions of the function declarations in the include
must match the calling convention of the functions in the DLL. For example, if the DLL
exports functions using the __stdcall calling convention, the function declarations in the
include file must contain the __stdcall keyword. Load the include file into a Source
window, and select the Generate DLL Import Library command in the Options menu.

Default Unloading/Reloading Policy
Some fundamental differences exist in the way Windows 95/NT and Windows 3.1 hand
DLL that multiple processes use.

Windows 95/NT creates a separate data space for each process that uses the DLL.
Windows 3.1 creates only one data space for all processes that use the DLL.

Windows 95/NT notifies a DLL each time a process loads or unloads it. Windows 3.1 d
not notify a DLL each time a process loads or unloads it. Windows 3.1 notifies the DLL
when the first process loads it and the last process unloads it.

LabWindows/CVI for Windows 95/NT unloads DLLs, by default, after each execution o
user program in the development environment. This behavior more accurately simulate
what happens when you execute a standalone executable, and it is more suitable for
Windows 95/NT DLLs that rely on load/unload notification on each execution of a progr
You can change the default behavior by turning off the Unload DLLs After Each Run op
in the Run Options dialog box of the Project window. National Instruments recommend
however, that you leave the default behavior in effect.

Compatibility with External Compilers
LabWindows/CVI for Windows 95/NT can be compatible at the object code level with
any of the four compatible external compilers (Microsoft Visual C/C++, Borland C/C++,
Watcom C/C++, and Symantec C/C++). Because these compilers are not compatible w
each other at the object code level, LabWindows/CVI can be compatible with only one
external compiler at a time. This manual refers to the compiler with which your copy of
LabWindows/CVI is currently compatible as the current compatible compiler.
LabWindows/CVI Programmer Reference Manual 3-4 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ant
 and

n

n

 the
ith

m an
sfully
eral

ly the
xist,

 that
) for
rnal

00ProRef.book : 06chap03.fm Page 5 Monday, March 9, 1998 3:23 PM
Choosing Your Compatible Compiler
When installing LabWindows/CVI, you must choose your compatible compiler. If you w
to change your choice of compatible compiler later, you can run the installation program
change to another compatible compiler.

You can see which compatible compiler is active in LabWindows/CVI by selecting the
Compiler Options command in the Options menu of the Project window.

Object Files, Library Files, and DLL Import Libraries
If you create an object file, library file, or DLL import library in LabWindows/CVI, you ca
use the file only in the current compatible compiler or in a copy of LabWindows/CVI
that you installed with the same compatibility choice. For detailed information on using
LabWindows/CVI-generated object and static library files in external compilers, refer to
the Using LabWindows/CVI Libraries in External Compilers section later in this chapter.

If you load an object file, library file, or DLL import library file in LabWindows/CVI,
you must have created the file in the current compatible compiler or in a copy of
LabWindows/CVI that you installed with the same compatibility choice. If you have
a DLL but you do not have a compatible DLL import library, LabWindows/CVI reports a
error when you attempt to link your project.

To create a compatible import library, you must have an include file that contains the
declarations of all the functions and global variables you want to access from the DLL.
Load the include file into a Source window, and select the Generate DLL Import Library
command in the Options menu.

Make sure the calling conventions of the function declarations in the include file match
calling convention of the functions in the DLL. Whereas DLLs usually export functions w
the __stdcall calling convention, the __stdcall keyword is sometimes missing from the
function declarations in the associated include files. If you generate an import library fro
include file that does not agree with the calling convention the DLL uses, you can succes
build a project that contains the import library, but LabWindows/CVI usually reports a gen
protection fault when you run the project.

Compatibility Issues in DLLs
In general, you can use a DLL without regard to the compiler you used to create it. On
DLL import library must be created for the current compatible compiler. Some cases e
however, in which you cannot call a DLL that you created using one compiler from an
executable or DLL that you created using another compiler. If you want to create DLLs
you can use in different compilers, design the Application Programming Interface (API
your DLL to avoid such problems. The following are areas in which the DLLs that exte
compilers create are not fully compatible.
© National Instruments Corporation 3-5 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

ce
ose
back

pecify
ibility
 that

00ProRef.book : 06chap03.fm Page 6 Monday, March 9, 1998 3:23 PM
Structure Packing
The compilers differ in their default maximum alignment of elements within structures.

If your DLL API uses structures, you can guarantee compatibility among the different
compilers by using the pack pragma to specify a specific maximum alignment factor. Pla
this pragma in the DLL include file, before the definitions of the structures. You can cho
any alignment factor. After the structure definitions, reset the maximum alignment factor
to the default, as in the following example:

#pragma pack (4) /* set maximum alignment to 4 */

typedef struct {

 char a;

 int b;

 } MyStruct1;

typdef struct {

 char a;

 double b;

 } MyStruct2;

#pragma pack () /* reset max alignment to default */

LabWindows/CVI predefines the __DEFALIGN macro to the default structure alignment of
the current compatible compiler.

Bit Fields
Borland C/C++ uses the smallest number of bytes necessary to hold the bit fields you s
in a structure. The other compilers always use 4-byte elements. You can force compat
by adding a dummy bit field of the correct size to pad the set of contiguous bit fields so
they fit exactly into a 4-byte element. Example:

typedef struct {

 int a:1;

 int b:1;

 int c:1;

 int dummy:29; /* pad to 32 bits */

} MyStruct;
LabWindows/CVI Programmer Reference Manual 3-6 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

s

f

tibility

tes.

ler

I.

00ProRef.book : 06chap03.fm Page 7 Monday, March 9, 1998 3:23 PM
Returning Floats and Doubles
The compilers return float and double scalar values using different mechanisms. This i
true of all calling conventions, including __stdcall . The only solution for this problem is
to change your DLL API so that it uses output parameters instead of return values for double
and float scalars.

Returning Structures
For functions you do not declare with the __stdcall calling convention, the compilers
return structures using different mechanisms. For functions you declare with __stdcall , the
compilers return structures in the same way, except for 8-byte structures. National
Instruments recommends that your DLL API use structure output parameters instead o
structure return values.

Enum Sizes
By default, Watcom uses the smallest integer size necessary to represent the largest enum
value: 1 byte, 2 bytes, or 4 bytes. The other compilers always use 4 bytes. Force compa
by using the -ei (Force Enums to Type Int) option with the Watcom compiler.

Long Doubles
In Borland C/C++, long double values are 10 bytes. In the other compilers, they are 8 by
In LabWindows/CVI, they are always 8 bytes. Avoid using long double in your DLL API.

Differences between LabWindows/CVI and the External Compilers
LabWindows/CVI does not work with all the non-ANSI extensions each external compi
provides. Also, in cases where ANSI does not specify the exact implementation,
LabWindows/CVI does not always agree with the external compilers. Most of these
differences are obscure and rarely encountered. The following are the most important
differences you might encounter:

• wchart_t is only one-byte in LabWindows/CVI.

• 64-bit integers do not exist in LabWindows/CVI.

• long double values are 10 bytes in Borland C/C++ but 8 bytes in LabWindows/CV

• You cannot use structured exception handling in LabWindows/CVI.

• You cannot use the Watcom C/C++ __cdecl calling convention in LabWindows/CVI for
functions that return float or double scalar values or structures. In Watcom, __cdecl
is not the default calling convention.

• LabWindows/CVI does not define _MSC_VER, __BORLANDC__, __WATCOMC__, and
__SC__. The external compilers each define one of these macros. If you port code
© National Instruments Corporation 3-7 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

u

t
rary

00ProRef.book : 06chap03.fm Page 8 Monday, March 9, 1998 3:23 PM
originally developed under one of these external compilers to LabWindows/CVI, yo
might have to manually define one of these macros.

External Compiler Versions Supported
The following versions of each external compiler work with LabWindows/CVI for
Windows 95/NT:

• Microsoft Visual C/C++, version 2.2 or higher

• Borland C/C++, version 4.51 or higher

• Watcom C/C++, version 10.5 or higher

• Symantec C/C++, version 7.2 or higher

Required Preprocessor Definitions
When you use an external compiler to compile source code that includes any of the
LabWindows/CVI include files, add the following to your preprocessor definitions:

_NI_mswin32_

Multithreading and the LabWindows/CVI Libraries
Although the LabWindows/CVI environment is not multithreaded, you can use
LabWindows/CVI Libraries in the following multithreaded contexts:

• When you call the LabWindows/CVI Libraries from a multithreaded executable you
create in LabWindows/CVI or in an external compiler.

• When you call the LabWindows/CVI Libraries from a DLL that a multithreaded
executable loads. You can create the DLL in LabWindows/CVI or in an external
compiler.

• When you call the LabWindows/CVI Libraries from an object or static library file tha
you dynamically load in a multithreaded executable. You can create the object or lib
file in LabWindows/CVI or in an external compiler.

All the LabWindows/CVI libraries are multithreaded safe when used outside of the
LabWindows/CVI development environment.

For detailed information on how to use the LabWindows/CVI User Interface Library in a
multithreaded program, refer to Chapter 3, Programming with the User Interface Library, in
the LabWindows/CVI User Interface Reference Manual.
LabWindows/CVI Programmer Reference Manual 3-8 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

all

, you

00ProRef.book : 06chap03.fm Page 9 Monday, March 9, 1998 3:23 PM
Using LabWindows/CVI Libraries in External Compilers
Under Windows 95/NT, you can use the LabWindows/CVI libraries in any of the four
compatible external compilers. You can create executables and DLLs that call the
LabWindows/CVI libraries. LabWindows/CVI ships with the run-time DLLs that contain
the libraries. Executable files you create in LabWindows/CVI also use these DLLs. The
cvi\extlib directory contains DLL import libraries and a startup library, all compatible
with your external compiler. Never use the .lib files in the cvi\bin directory in an external
compiler.

You must always include the following two libraries in your external compiler project:

cvisupp.lib /* startup library */

cvirt.lib /* import library to DLL containing:*/

/* User Interface Library */

/* Formatting and I/O Library */

/* RS-232 Library */

/* DDE Library */

/* TCP Library */

/* Utility Library */

You can add the following static library file from cvi\extlib to your external compiler
project:

analysis.lib /* Analysis or Advanced Analysis Library */

You can add the following DLL import library files from cvi\extlib to your external
compiler project:

gpib.lib /* GPIB/GPIB 488.2 Library */

dataacq.lib /* Data Acquisition Library */

easyio.lib /* Easy I/O for DAQ Library */

visa.lib /* VISA Transition Library */

nivxi.lib /* VXI Library */

ivi.lib /* IVI Library */

cviauto.lib /* ActiveX Automation Library*/

If you use an instrument driver that makes references to both the GPIB and VXI libraries
can include both gpib.lib and nivxi.lib to resolve the references to symbols in those
libraries. If you do not have access to one of these files, you can replace it with one of
following files:

gpibstub.obj /* stub GPIB functions */

vxistub.obj /* stub VXI functions */
© National Instruments Corporation 3-9 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

nal
t use

r
.

e

,

 the

e

e
ent

00ProRef.book : 06chap03.fm Page 10 Monday, March 9, 1998 3:23 PM
If you use an external compiler that requires a WinMain entry point, the following optional
library allows you to define only main in your program.

cviwmain.lib /* contains a WinMain() function which */

/* calls main() */

Include Files for the ANSI C Library and the LabWindows/CVI Libraries
The cvirt.lib import library contains symbols for all the LabWindows/CVI libraries,
except the ANSI C standard library. When you create an executable or DLL in an exter
compiler, you use the compiler’s own ANSI C standard library. Because of this, you mus
the external compiler’s include files for the ANSI C library when compiling source files.
Although the include files for the other LabWindows/CVI libraries are in the cvi\include
directory, the LabWindows/CVI ANSI C include files are in the cvi\include\ansi
directory. Thus, you can specify cvi\include as an include path in your external compile
while at the same time using the external compiler’s version of the ANSI C include files

Note Use the external compiler’s ANSI C include files only when you compile a sourc
file that you intend to link using the external compiler. If you intend to link the file
in LabWindows/CVI, use the LabWindows/CVI ANSI C include files. This is true
regardless of which compiler you use to compile the source file.

For more information, refer to the Setting Up Include Paths for LabWindows/CVI, ANSI C
and SDK Libraries section later in this chapter.

Standard Input/Output Window
One effect of using the external compiler’s ANSI C standard library is that the printf and
scanf functions do not use the LabWindows/CVI Standard Input/Output window. If you
want to use printf and scanf , you must create a console application, which is called a
character-mode executable in Watcom.

You can continue to use the LabWindows/CVI Standard Input/Output Window by calling
FmtOut and ScanIn functions in the Formatting and I/O library.

Resolving Callback References from .UIR Files
When you link your program in LabWindows/CVI, LabWindows/CVI keeps a table of th
non-static functions that are in your project. When your program calls LoadPanel or
LoadMenuBar , the LabWindows/CVI User Interface Library uses this table to find the
callback functions associated with the objects you load from the user interface resourc
(.uir) file. This is true whether you run your program in the LabWindows/CVI developm
environment or as a standalone executable.
LabWindows/CVI Programmer Reference Manual 3-10 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ke
 must

ant

ed in

able.

want
 this

tains.

ou

ant

ed in

00ProRef.book : 06chap03.fm Page 11 Monday, March 9, 1998 3:23 PM
When you link your program in an external compiler, the external compiler does not ma
such a table available to the User Interface Library. To resolve callback references, you
use LabWindows/CVI to generate an object file that contains the necessary table.

1. Create a LabWindows/CVI project that contains the .uir files your program uses, if you
do not already have one.

2. Select the External Compiler Support command in the Build menu of the Project
window. A dialog box appears.

3. In the UIR Callbacks Object File control, enter the pathname of the object file you w
to generate. When you click on the Create button, LabWindows/CVI generates the
object file with a table that contains the names of all the callback functions referenc
all the .uir files in the project. When you modify and save any of these .uir files,
LabWindows/CVI regenerates the object file to reflect the changes.

4. Include this object file in the external compiler project you use to create the execut

5. You must call InitCVIRTE at the beginning of your main or WinMain function. Refer
to the Calling InitCVIRTE and CloseCVIRTE section later in this chapter.

Linking to Callback Functions Not Exported from a DLL
Normally, the User Interface Library searches for callback functions only in the table of
functions in the executable. When you load a panel or menu bar from a DLL, you might
to link to non-static callback functions the DLL contains, but does not export. You can do
by calling LoadPanelEx and LoadMenuBarEx . When you pass the DLL module handle to
LoadPanelEx and LoadMenuBarEx , the User Interface Library searches the table of
callback functions the DLL contains before searching the table that the executable con
Refer to Chapter 4, User Interface Library Function Reference, of the LabWindows/CVI User
Interface Reference Manual for detailed information on LoadPanelEx and
LoadMenuBarEx .

If you create your DLL in LabWindows/CVI, LabWindows/CVI includes the table of
functions in the DLL automatically. If you create your DLL using an external compiler, y
must generate an object file that contains the necessary table as follows.

1. Create a LabWindows/CVI project that contains the .uir files your DLL loads, if you
do not already have one.

2. Select the External Compiler Support command in the Build menu of the Project
window. A dialog box appears.

3. In the UIR Callbacks Object File control, enter the pathname of the object file you w
to generate. When you click on the Create button, LabWindows/CVI generates the
object file with a table that contains the names of all the callback functions referenc
all the .uir files in the project. When you modify and save any of these .uir files,
LabWindows/CVI regenerates the object file to reflect the changes.
© National Instruments Corporation 3-11 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

ll

ime
 your
his
t or

ke

 for

DE,

 and
r the
nd

e
te an

es

-time

00ProRef.book : 06chap03.fm Page 12 Monday, March 9, 1998 3:23 PM
4. Include this object file in the external compiler project you use to create the DLL.

5. You must call InitCVIRTE and CloseCVIRTE in your DLLMain function. Refer to the
Calling InitCVIRTE and CloseCVIRTE section later in this chapter.

Resolving References from Modules Loaded at Run-Time

Note This section does not apply unless you use LoadExternalModule to load object
or static library files.

Unlike DLLs, object and static library files can contain unresolved references. If you ca
LoadExternalModule to load an object or static library file at run time, the Utility
Library must resolve those references using function and variable symbols from the
LabWindows/CVI Run-time Engine, from the executable, or from previously loaded run-t
modules. A table of these symbols must be available in the executable. When you link
program in LabWindows/CVI, LabWindows/CVI automatically includes a symbol table. T
is true whether you run your program in the LabWindows/CVI development environmen
as a standalone executable.

When you link your program in an external compiler, the external compiler does not ma
such a table available to the Utility Library. LabWindows/CVI provides ways to help you
create the symbol table easily.

Resolving References to the LabWindows/CVI Run-Time Engine
LabWindows/CVI makes available two object files that contain symbol table information
the LabWindows/CVI libraries that are in Run-time Engine DLLs:

• Include cvi\extlib\refsym.obj in your external compiler project if your run-time
modules refer to any symbols in the User Interface, Formatting and I/O, RS-232, D
TCP, or Utility Library.

• Include cvi\extlib\arefsym.obj in your external compiler project if your run-time
modules refer to any symbols in the ANSI C library. If you have to use this object file
you use Borland C/C++ to create your executable, you must choose Static Linking fo
Standard Libraries. In the Borland C/C++ IDE, you can do this in the New Target a
Target Expert dialog boxes.

Resolving References to Symbols Not in Run-Time Engine
If your run-time modules refer to any other symbols from your executable, you must us
LabWindows/CVI to generate an object file that contains a table of those symbols. Crea
include file that contains complete declarations of all the symbols your run-time modul
reference from the executable. The include file can contain nested #include statements and
can contain executable symbols that your run-time modules do not refer to. If your run
LabWindows/CVI Programmer Reference Manual 3-12 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

e

r
 the

 Also,

t. You
o
s

ols
al
e an
e
,

 stop,

 not
release

00ProRef.book : 06chap03.fm Page 13 Monday, March 9, 1998 3:23 PM
module references any of the commonly used Windows SDK functions, you can use th
cvi\sdk\include\basicsdk.h file.

Execute the External Compiler Support command in the Build menu of the Project window.
A dialog box appears. Enable the Using Load External Module option. Enable the Othe
Symbols checkbox if it is not already enabled. Enter the pathname of the include file in
Header File control. Enter the pathname of the object file to generate in the Object File
control. Click on the Create button to the right of the Object File control.

Include the object file in the external compiler project you use to create your executable.
you must call InitCVIRTE at the beginning of your main or WinMain function. Refer to the
Calling InitCVIRTE and CloseCVIRTE section later in this chapter.

Resolving Run-Time Module References to Symbols Not Exported
from a DLL
When you load an object or static library file from a DLL, you might want to resolve
references from that module using global symbols the DLL contains, but does not expor
can do this by calling LoadExternalModuleEx . When you pass the DLL module handle t
LoadExternalModuleEx , the Utility Library searches the symbol table the DLL contain
before searching the table that the executable contains. Refer to Chapter 8, Utility Library, of
the LabWindows/CVI Standard Libraries Reference Manual for detailed information on
LoadExternalModuleEx .

If you create your DLL in LabWindows/CVI, LabWindows/CVI includes the table of symb
in the DLL automatically. If you create your DLL using an external compiler, the extern
compiler does not make such a table available to the Utility Library. Thus, when you us
external compiler, you must include in your DLL one or more object files that contain th
necessary symbol tables. You can do this using the technique that the previous section
Resolving References to Symbols Not in Run-Time Engine, describes. You must call
InitCVIRTE and CloseCVIRTE in your DLLMain function. Refer to the Calling InitCVIRTE
and CloseCVIRTE section later in this chapter.

Run State Change Callbacks Are Not Available in External Compilers
When you use a compiled module in LabWindows/CVI, you can arrange for
LabWindows/CVI to notify the module of a change in the execution status such as start,
suspend, or resume. You do this through a callback function that is always named
__RunStateChangeCallback. The Notification of Changes in Run State section, in
Chapter 2, Using Loadable Compiled Modules, of this manual, describes this in detail.

The run state change callback capability in LabWindows/CVI is necessary because the
LabWindows/CVI development environment executes your program as part of the
LabWindows/CVI process. When your program terminates, the operating system does
release resources as it does when a process terminates. LabWindows/CVI attempts to
© National Instruments Corporation 3-13 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

lso, if
isable

parate
essary

 and
le and

00ProRef.book : 06chap03.fm Page 14 Monday, March 9, 1998 3:23 PM
resources your program allocated, but your compiled module might have to do more. A
the program suspends for debugging purposes, your compiled module might have to d
interrupts.

When you run an executable created in an external compiler, it always executes as a se
process, even when you debug it. Thus, the run state change callback facility is not nec
and does not work. External compilers report link errors when you define
__RunStateChangeCallback in more than one object file. If you include a run state
change callback in a compiled module that you intend to use both in LabWindows/CVI
an external compiler, it is a good idea to put the callback function in a separate source fi
create a .lib file instead of a .obj file.

Calling InitCVIRTE and CloseCVIRTE
If you link an executable or DLL in an external compiler, you must call the InitCVIRTE
function at the beginning of your main , WinMain , or DLLMain function.

For an executable using main as the entry point, your code must include the following
segment:

#include <cvirte.h>

int main (argc, char *argv[])

{

if (InitCVIRTE(0, argv, 0) == 0)

return (-1);/* out of memory */

/* your other code */

}

For an executable using WinMain as the entry point, your code must include the following
segment:

#include <cvirte.h>

int __stdcall WinMain (HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)

{

if (InitCVIRTE(hInstance, 0, 0) == 0)

return (-1);/* out of memory */

/* your other code */

}

LabWindows/CVI Programmer Reference Manual 3-14 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

d line
ion
or
o not
I

 files

ate.
nk.
 a

00ProRef.book : 06chap03.fm Page 15 Monday, March 9, 1998 3:23 PM
For a DLL, you also have to call CloseCVIRTE in DLLMain . The code must include the
following segment:

#include <cvirte.h>

int __stdcall DllMain (HINSTANCE hinstDLL, DWORD fdwReason,

 LPVOID pvReserved)

{

 if (fdwReason == DLL_PROCESS_ATTACH)

 {

 if (InitCVIRTE (hinstDLL, 0, 0) == 0)

 return 0; /* out of memory */

 /* your other ATTACH code */

 }

else if (fdwReason == DLL_PROCESS_DETACH)

 {

 /* your other DETACH code */

 CloseCVIRTE ();

 }

 return 1;

}

Note It is harmless, but unnecessary, to call these functions when you link your
executable in LabWindows/CVI for Windows 95/NT.

Watcom Stack Based Calling Convention
When you use the LabWindows/CVI libraries in the Watcom compiler, you must set the
default calling convention to the 80486 Stack Based calling convention. In the comman
compiler, this is the -4s option. In the Watcom IDE, you can set the default calling convent
by using the Options»C Compiler Switches command. The option is in the Target Process
section of the Memory Model and Processor Switches section of the dialog box. If you d
set this option, the Watcom linker reports undefined references to the LabWindows/CV
run-time libraries.

Using Object and Library Files in External Compilers
When you use an external compiler to link a project that contains object or static library
created in LabWindows/CVI, keep several points in mind.

Default Library Directives
Most compilers insert default library directives in the object and library files they gener
A default library directive tells the linker to automatically include a named library in the li
Normally, the directive refers to the name of C library files. If no files in the link contain
© National Instruments Corporation 3-15 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

the

rary

tive,
ven

tain

ou

and

e

itly

00ProRef.book : 06chap03.fm Page 16 Monday, March 9, 1998 3:23 PM
default library directive, and the linker does not explicitly include a C library in the link,
linker reports unresolved function references in the object modules.

Object and static library files that LabWindows/CVI creates do not contain a default lib
directive. This has different implications for each compiler.

Microsoft Visual C/C++
If you include in your project at least one object file that contains a default library direc
the Visual C linker uses that library to resolve references in all object and library files, e
the files you create in LabWindows/CVI. Object files you create in Visual C usually con
default library directives.

If you do not include in your project any object files or libraries you create in Visual C, y
can add the following Visual C libraries to the project to avoid link errors:

libc.lib

oldnames.lib

In the Visual C development environment, add these library names using the Input category
in the Link tab of the Project Settings dialog box.

Borland C/C++
No problems exist with the absence of default library directives when you use the Borl
compiler.

Watcom C/C++
Like Visual C, at least one object file must contain a default library directive to cause th
C library to be linked in. In addition, Watcom also requires a default library directive for
floating-point support.

If you do not include in your project any object files with the required directives, add the
following libraries, in the order shown, to the Libraries setting in the Windows Linking
Switches dialog box:

clib3s

math387

noemu387

Symantec C/C++
Each object file must have the default library directive for the C library. You must explic
add the Symantec C library to your project. The library filename is snn.lib and it is in the
lib subdirectory under the Symantec installation directory.
LabWindows/CVI Programmer Reference Manual 3-16 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ate
rsion

ject

iler

LL.

ler

tion,
ces.
n

r
ing

00ProRef.book : 06chap03.fm Page 17 Monday, March 9, 1998 3:23 PM
Borland Static versus Dynamic C Libraries
When you link a Borland C/C++ project that contains object or static library files you cre
in LabWindows/CVI, it is a good idea to configure the Borland project to use the static ve
of the Borland C libraries.

If you choose to use the dynamic C libraries, you must compile the LabWindows/CVI ob
modules with the _RTLDLL macro. You must define the _RTLDLL macro in your source code
before including any of the Borland C header files.

Borland Incremental Linker
You cannot use your LabWindows/CVI object or static library files in the Borland C comp
if you choose to use the incremental linker. Turn off the Use Incremental Linker option.

Borland C++ Builder
You cannot use your LabWindows/CVI object or static library files in the
Borland C++ Builder.

Watcom Pull-in References
The Watcom linker does not automatically link the startup code into your application or D
Instead, it requires the module that contains main , WinMain , or DllMain to reference a
special symbol that the appropriate startup code module resolves. The Watcom compi
automatically generates a reference to the special symbol into any module that containsmain ,
WinMain , or DllMain . This symbol is __DLLstart_ , _wstart2_ , or _cstart_ ,
depending on whether the project is for a DLL, Windows application, or console applica
respectively. Object modules compiled in LabWindows/CVI do not contain such referen
LabWindows/CVI cannot generate the correct reference because it makes no distinctio
between console and non-console applications.

You must include the symbol reference in your object file explicitly. For example, if you
module contains the main function, you can generate the correct symbol reference by add
the following to the source code for the module:

extern int _cstart_;

void *dummy = &_cstart_;
© National Instruments Corporation 3-17 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

ave to

00ProRef.book : 06chap03.fm Page 18 Monday, March 9, 1998 3:23 PM
Creating Object and Library Files in External Compilers
for Use in LabWindows/CVI

When you use a compatible external compiler to create an object or library file for
use in LabWindows/CVI, you must use the include files in the cvi\include and
cvi\sdk\include directories. Ensure that these directories have priority over the
default paths for the compiler’s C library and SDK library include files.

You must choose the compiler options carefully. LabWindows/CVI tries to work with the
default options for each compiler as much as possible. In some cases, however, you h
choose options that override the defaults. In other cases you must accept the defaults.

Microsoft Visual C/C++
LabWindows/CVI is compatible with all the defaults.

You must not use the following options to override the default settings:

Borland C/C++
LabWindows/CVI is compatible with all the defaults.

You must not use the following options to override the default settings:

/J (Unsigned Characters)

/Zp (Struct Member Alignment)

/Ge (Stack Probes)

/Gh (Profiling)

/Gs (Stack Probes)

-a (Data Alignment)

-K (Unsigned Characters)

-u- (Turn Off Generation of Underscores)

-N (Test Stack Overflow)

-p (Pascal Calling Convention)

-pr (Register Calling Convention)

-fp (Correct Pentium FDIV Flaw)
LabWindows/CVI Programmer Reference Manual 3-18 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ors

00ProRef.book : 06chap03.fm Page 19 Monday, March 9, 1998 3:23 PM
Watcom C/C++
You must use the following options to override the default settings:

If your external object calls LoadExternalModule or LoadExternalModuleEx , you must
also add the following compiler option:

-d__NO_MATH_OPS

You must not use the following option to override the default settings:

Symantec C/C++
You must use the following options to override the default settings:

You must not use the following options to override the default settings:

Note Certain specialized options can generate symbol references that cause link err
in LabWindows/CVI. If you encounter a link error on a symbol in a module you
compiled in an external compiler and you do not recognize the symbol, try
changing your external compiler options.

-ei (Force Enums to Type Int)

-bt=nt (Target Platform is Windows 95/NT)

-mf (Flat Memory Model)

-4s (80486 Stack-Based Calling)

-s (Disable Stack Depth Checking)

-j (Change Char Default to Signed)

-fpi87 (Generate In-Line 80x87 Code)

-Zp (Structure Alignment)

-mn (Windows 95/NT Memory Model)

-f (Generate In-Line 80x87 Code)

-a (Struct Alignment)

-P (Use Pascal Calling Convention)

-s (Check Stack Overflow)
© National Instruments Corporation 3-19 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

. In
table

er

pilers
 only

o can
ows

an

e it.

00ProRef.book : 06chap03.fm Page 20 Monday, March 9, 1998 3:23 PM
Creating Executables in LabWindows/CVI
You can create true 32-bit Windows executables in LabWindows/CVI for Windows 95/NT
LabWindows/CVI for Windows 3.1, you run standalone programs using a special execu
file that contains the LabWindows/CVI run-time libraries. If you run more than one program
at a time, Windows 3.1 loads extra copies of this special executable into memory. Und
Windows 95/NT, the LabWindows/CVI run-time libraries come in DLL form. Standalone
executables you create in LabWindows/CVI and executables you create in external com
use the same DLLs. If you run more than one program at a time, Windows 95/NT loads
one copy of the DLL.

To create a standalone executable, you must first select Standalone Executable from the
submenu attached to the Target command in the Build menu of the Project window. When
you select Standalone Executable, the Create Standalone Executable command appears
below the Target command in the Build menu. The Create Standalone Executable
command under Windows 95/NT is the same as under Windows 3.1, except that you als
specify version information to include in the executable in the form of a standard Wind
version resource.

Creating DLLs in LabWindows/CVI
In LabWindows/CVI for Windows 95/NT, you can create 32-bit DLLs. Along with each
DLL, LabWindows/CVI creates a DLL import library for your compatible compiler. You c
choose to create DLL import libraries compatible with all four external compilers.

You must have a separate project for each DLL you want to create. Select Dynamic Link
Library from the submenu attached to the Target command in the Build menu of the Project
window. When you select Dynamic Link Library , the Create Dynamic Link Library
command appears below the Target command in the Build menu. Refer to Chapter 3, Project
Window, in the LabWindows/CVI User Manual, for detailed information on the Create
Dynamic Link Library command.

You can debug the DLLs you create in LabWindows/CVI. Refer to the DLL Debugging
(Windows 95/NT Only) section in Chapter 3, Project Window, of the LabWindows/CVI
User Manual, for more information.

Customizing an Import Library
If you have to perform special processing in your DLL import library, you can customiz
Instead of generating a .lib file, you can generate a .c file that contains source code. If you
do this, however, you can export only functions from the DLL, not variables.
LabWindows/CVI Programmer Reference Manual 3-20 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ions

to
 and

ort

u

urce

n

ns on
tions are
e same

l

00ProRef.book : 06chap03.fm Page 21 Monday, March 9, 1998 3:23 PM
To customize an import library, you must have an include file that contains the declarat
of all the functions you want to export from the DLL. Load the include file into a Source
window, and execute the Generate DLL Import Source command in the Options menu.

After you have generated the import source, you can modify it, including making calls
functions in other source files. Create a new project that contains the import source file
any other files it refers to. Select Static Library from the submenu attached to the Target
command in the Build menu of the Project window. Execute the Create Static Library
command.

Note This import source code does not operate in the same way as a normal DLL imp
library. When you link a normal DLL import library into an executable, the
operating system attempts to load the DLL as soon as the program starts. The
import source code LabWindows/CVI generates does not load the DLL until yo
call one of the functions it exports.

Preparing Source Code for Use in a DLL
When you create a DLL, you must address the following issues that can affect your so
code and include file:

• The calling convention you use to declare the functions you want to export

• How you specify which DLL functions and variables you want to export

• Marking imported symbols in the DLL include file you distribute

This section discusses how you can address these issues when you create your DLL i
LabWindows/CVI. If you create your DLL in an external compiler, the approach is very
similar. The external compilers, however, do not agree in all aspects. This chapter also
discusses these differences.

Some of the information in this section is very technical and complex. Recommendatio
the best approaches to these issues are at the end of the section. These recommenda
intended to make creating the DLL as simple as possible, and to make it easy to use th
source code in LabWindows/CVI and the external compilers.

Calling Convention for Exported Functions
If you intend for only C or C++ programs to use your DLL, you can use the __cdecl or
Watcom stack-based calling convention to declare the functions you want to export. If,
however, you want your DLL to be callable from environments such as Microsoft Visua
Basic, you must declare the functions you want to export with the __stdcall calling
convention.

You must do this by explicitly defining the functions with the __stdcall keyword. This is
true whether or not you choose to make __stdcall the default calling convention for your
© National Instruments Corporation 3-21 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

ro in

ft

nnot

les

he

de
de

e

only

00ProRef.book : 06chap03.fm Page 22 Monday, March 9, 1998 3:23 PM
project. You must use the __stdcall keyword in the declarations in the include file you
distribute with the DLL.

Other platforms, such as UNIX or Windows 3.1 do not recognize the __stdcall keyword.
If you work with source code that you might use on other platforms, you must use a mac
place of __stdcall . The cvidef.h include file defines the DLLSTDCALL macro for this
purpose.

The following are examples of using the DLLSTDCALL macro.

int DLLSTDCALL MyIntFunc (void);

char * DLLSTDCALL MyStringFunc (void);

Note You cannot use the __stdcall calling convention on functions with a variable
number of arguments. Consequently, you cannot use such functions in Microso
Visual Basic.

Exporting DLL Functions and Variables
When a program uses a DLL, it can access only the functions or variables that the DLL
exports. The DLL can export only globally declared functions and variables. The DLL ca
export functions and variables you declare as static .

If you create your DLL in LabWindows/CVI, you can indicate which functions and variab
to export in two ways: the include file method and the qualifier method.

Include File Method
You can use include files to identify symbols to export. The include files must contain t
declarations of the symbols you want to export. The include files can contain nested
#include statements, but the DLL does not export the declarations in the nested inclu
files. In the Create Dynamic Link Library dialog box, you select from a list of all the inclu
files in the project.

The include file method does not work with other compilers. However, it is similar to th
.def method that the other compilers use.

Export Qualifier Method
You can mark each function and variable you want to export with an export qualifier.
Currently, not all compilers recognize the same export qualifier names. The most comm
used qualifier is __declspec(dllexport) . Some also recognize __export .
LabWindows/CVI recognizes both. The cvidef.h include file defines the DLLEXPORT
LabWindows/CVI Programmer Reference Manual 3-22 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

les of

s

l.
e

e
es

le
ese
ns
ng the

n you
tly

ms

se

d

00ProRef.book : 06chap03.fm Page 23 Monday, March 9, 1998 3:23 PM
macro to resolve differences among compilers and platforms. The following are examp
using the DLLEXPORT macro:

int DLLEXPORT DLLSTDCALL MyFunc (int parm) {}

int DLLEXPORT myVar = 0;

If the type of your variable or function requires an asterisk (*) in the syntax, put the qualifier
after the asterisk, as in the following example:

char * DLLEXPORT myVar = NULL;

Note Borland C/C++ version 4.5x, requires that you place the qualifier before the
asterisk. In Borland C/C++ 5.0, you can place the qualifier on either side of the
asterisk.

When LabWindows/CVI creates a DLL, it exports all symbols for which export qualifier
appear in either the definition or the declaration. If you use an export qualifier on the
definition and an import qualifier on the declaration, LabWindows/CVI exports the symbo
The external compilers differ widely in their behavior on this point. Some require that th
declaration and definition agree.

Note If you include in your DLL project an object or library file that defines exported
symbols, LabWindows/CVI cannot correctly create import libraries for each of th
external compilers. This problem does not arise if you use only source code fil
in your DLL project.

Marking Imported Symbols in Include File Distributed with DLL
If your DLL might be used in a C or C++ environment, you must distribute an include fi
with your DLL. The include file must declare all the symbols the DLL exports. If any of th
symbols are variables, you must mark them with an import qualifier. Variable declaratio
require import qualifiers so that the compiler can generate the correct code for accessi
variables.

You can use import qualifiers on function declarations, but they are not necessary. Whe
use an import qualifier on a function declaration, external compilers can generate sligh
more efficient code for calling the function.

Using import qualifiers in the include file you distribute with your DLL can cause proble
if you use the same include file in the DLL source code:

• If you mark variable declarations in the include file with import qualifiers and you u
the include file in a source file other than the one in which you define the variable,
LabWindows/CVI and the external compilers treat the variable as if it were importe
from another DLL and generate incorrect code as a result.

• If you use export qualifiers in the definition of symbols and the include file contains
import qualifiers on the same symbols, some external compilers report an error.
© National Instruments Corporation 3-23 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

e

e

lag

ns:

t

port

o not

files

f the

te
sic

00ProRef.book : 06chap03.fm Page 24 Monday, March 9, 1998 3:23 PM
You can solve these problems in several different ways:

• You can avoid exporting variables from DLLs, and thereby eliminate the need to us
import qualifiers. For each variable you want to export, you can create functions to
get and set its value or a function to return a pointer to the variable. You do not hav
to use import qualifiers for functions. This is the simplest approach and works in
LabWindows/CVI. However, it does not work if you use an export qualifier in a
function definition and you create the DLL with an external compiler that requires
the declaration to use the same qualifier.

• You can create a separate include file for distribution with the DLL.

• You can use a special macro that resolves to either an import or export qualifier
depending on a conditional compilation flag. In LabWindows/CVI you can set the f
in your DLL project by using the Compiler Defines command in the Options menu of
the Project window.

Recommendations
To make creating a DLL as simple as possible, adhere to the following recommendatio

• Use the DLLSTDCALL macro in the declaration and definition of all functions you wan
to export. Do not export functions with a variable number of arguments.

• Identify the symbols you want to export using the include file method. Do not use ex
qualifiers. If you use an external compiler, use the .def file method.

• Do not export variables from the DLL. For each variable you want to export, create
functions to get and set its value or a function to return a pointer to the variable. D
use import qualifiers in the include file.

If you follow these recommendations, you reap the following benefits:

• You can distribute with your DLL the same include file that you include in the source
you use to make the DLL. This is especially useful when you create DLLs from
instrument drivers.

• You can use the same source code to create the DLL in LabWindows/CVI and any o
four compatible external compilers.

• You can use your DLL in Microsoft Visual Basic or other non-C environments.

Automatic Inclusion of Type Library Resource for Visual Basic
The Create Dynamic Link Library command gives you the option to automatically crea
a Type Library resource and include it in the DLL. When you use this option, Visual Ba
users can call the DLL without having to use a header file that contains Declare statements
for the DLL functions. The command requires that you have a function panel file for
your DLL.
LabWindows/CVI Programmer Reference Manual 3-24 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

 it

 to

e the

 to a
rary
ect

he

00ProRef.book : 06chap03.fm Page 25 Monday, March 9, 1998 3:23 PM
If your function panel file contains help text, you can generate a Windows help file from
using the Generate Windows Help command in the Options menu of the Function Tree
Editor window. The Create Dynamic Link Library command provides an option to include
links into the Window help file in the Type Library. These links allow Visual Basic users
access the help information from the Type Library Browser.

Visual Basic has a more restricted set of types than C. Also, the Create Dynamic Link
Library command imposes certain requirements on the declaration of the DLL API. Us
following guidelines to ensure that Visual Basic can use your DLL:

• Always use typedefs for structure parameters and union parameters.

• Do not use enum parameters.

• Do not use structures that require forward references or that contain pointers.

• Do not use pointer types except for reference parameters.

Creating Static Libraries in LabWindows/CVI
You can create static library (.lib) files in LabWindows/CVI for Windows 95/NT. Static
libraries are libraries in the traditional sense—a collection of object files—as opposed
dynamic link library or an import library. You can use just one project to create static lib
files that work with all four compatible external compilers, but only if you include no obj
or library files in the project.

You must have a separate project for each static library you want to create. Select Static
Library from the submenu attached to the Target command in the Build menu of the Project
window. When you select the Static Library option, the Create Static Library command
appears below the Target command in the Build menu. Refer to Chapter 4, Source,
Interactive Execution and Standard Input/Output Windows, of the LabWindows/CVI User
Manual for detailed information on the Create Static Library command.

Note If you include a .lib file in a static library project, LabWindows/CVI includes all
object modules from the .lib in the static library it creates. When you create an
executable or DLL, LabWindows/CVI uses only the necessary modules from t
.lib file.

Note Do not set the default calling convention to __stdcall if you want to create a
static library for all four compatible external compilers.
© National Instruments Corporation 3-25 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

e
w

 the
ilers.

K

the

K
 by

ile

 the
 to
K

00ProRef.book : 06chap03.fm Page 26 Monday, March 9, 1998 3:23 PM
Creating Object Files in LabWindows/CVI
You can create an object file in LabWindows/CVI in one of two ways:

• Include a source (.c) file in your project. Enable the Compile into Object option for th
source file by double-clicking in the space next to the filename in the Project windo
under the column marked “O”. Compile the file.

• Open a source (.c) file and select the Create Object File command in the Options menu
of the Source window.

In LabWindows/CVI for Windows 95/NT, you can choose to create an object file for only
currently selected compiler or to create object files for all four compatible external comp

Note Do not set the default calling convention to __stdcall if you want to create a
static object for all four compatible external compilers.

Calling Windows SDK Functions in LabWindows/CVI
You can call Windows SDK Functions in LabWindows/CVI for Windows 95/NT. If you
install the LabWindows/CVI full development system from CD-ROM, you can call all
the Windows SDK functions. Otherwise, you can call only a subset of the Windows SD
functions.

To view help for the SDK functions, select the Windows SDK command in the Help menu
of any LabWindows/CVI window.

Windows SDK Include Files
You must include the SDK include files before the LabWindows/CVI include files. In this
way, you avoid problems that arise from function name and typedef conflicts between
Windows SDK and the LabWindows/CVI libraries. The LabWindows/CVI include files
contain special macros and conditional compilation to adjust for declarations in the SD
include files. Thus, LabWindows/CVI must process the SDK include files first, followed
the LabWindows/CVI include files.

When you compile in LabWindows/CVI or when you use an external compiler to comp
your source files for linking in LabWindows/CVI, use the LabWindows/CVI SDK include
files. The LabWindows/CVI SDK include files are in the cvi\sdk\include directory. The
LabWindows/CVI compiler automatically searches the cvi\sdk\include directory. You
do not have to add it to your include paths.

When you use an external compiler to compile and link your source files, you must use
SDK include files that come with the external compiler. If you use an external compiler
compile your source files for linking in LabWindows/CVI, use the LabWindows/CVI SD
LabWindows/CVI Programmer Reference Manual 3-26 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

n of
e

g the

 to
While

ent

dle

 safe

efer

ch
nly

arts
e these

00ProRef.book : 06chap03.fm Page 27 Monday, March 9, 1998 3:23 PM
include files. For more information, refer to the Setting Up Include Paths for
LabWindows/CVI, ANSI C, and SDK Libraries section later in this chapter.

The number of SDK include files is very large. Normally, you have to include only
windows.h because it includes many, but not all, of the other include files. The inclusio
windows.h along with its subsidiary include files significantly increases compilation tim
and memory usage. WIN32_LEAN_AND_MEAN is a macro from Microsoft that speeds
compiling by eliminating the less commonly used portions of windows.h and its subsidiary
include files. By default, LabWindows/CVI adds /DWIN32_LEAN_AND_MEAN as a
compile-time definition when you create a new project. You can alter this setting by usin
Compiler Defines command in the Options menu of the Project window.

Using Windows SDK Functions for User Interface Capabilities
The LabWindows/CVI User Interface Library uses the Windows SDK. It is not designed
be used in programs that attempt to build other user interface objects at the SDK level.
no specific restrictions exist on using SDK functions in LabWindows/CVI, National
Instruments recommends that you base your user interface either entirely on the
LabWindows/CVI User Interface Library or entirely on another user interface developm
system.

Using Windows SDK Functions to Create Multiple Threads
Although you can use the Windows SDK Functions to create multiple threads in a
LabWindows/CVI program, the LabWindows/CVI development environment cannot han
multiple threads. For instance, if your main program terminates without destroying the
threads, they do not terminate. Also, the LabWindows/CVI libraries are not multithread
when you run a program in the LabWindows/CVI development environment.

For information on using the LabWindows/CVI libraries in a multithreaded executable, r
to the Multithreading and the LabWindows/CVI Libraries section earlier in this chapter.

Automatic Loading of SDK Import Libraries
All the SDK functions are in DLLs. LabWindows/CVI and the four external compilers ea
come with a number of DLL import libraries for the SDK functions. Most of the commo
used SDK functions are in the following three import libraries:

kernel32.lib

gdi32.lib

user32.lib

LabWindows/CVI for Windows 95/NT automatically loads these three libraries when it st
up and searches them to resolve references at link time. Thus, you do not have to includ
libraries in your project.
© National Instruments Corporation 3-27 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

t add

ndard
VI

you

y

nal

r for

00ProRef.book : 06chap03.fm Page 28 Monday, March 9, 1998 3:23 PM
If the LabWindows/CVI linker reports SDK functions as unresolved references, you mus
import libraries to your project. Refer to the cvi\sdk\sdkfuncs.txt file for associations
of SDK import libraries to SDK functions. The import libraries are in the cvi\sdk\lib
directory.

Setting Up Include Paths for LabWindows/CVI, ANSI C,
and SDK Libraries

The rules for using SDK include files are not the same as the rules for using ANSI C sta
library include files, which in turn are different than the rules for using the LabWindows/C
library include files. Refer to the Include Files for the ANSI C Library and the
LabWindows/CVI Libraries and Windows SDK Include Files sections earlier in this chapter.

You must set up your include paths differently depending on the environment in which
compile and link. A discussion of each case follows.

Compiling in LabWindows/CVI for Linking in LabWindows/CVI
Use the LabWindows/CVI SDK and ANSI C include files. You do not have to set up an
special include paths; LabWindows/CVI finds the correct include files automatically.

Compiling in LabWindows/CVI for Linking in an External Compiler
Use the LabWindows/CVI SDK include files and the ANSI C include files from the exter
compiler. Using the Include Paths command in the Options menu of the Project window, add
the following as explicit include paths at the beginning of the project-specific list:

cvi\include

cvi\sdk\include

directory containing the external compiler's ANSI C include paths

Compiling in an External Compiler for Linking in an External Compiler
Use the SDK and ANSI C include files from the external compiler. This happens
automatically. Specify the following directories as include paths in the external compile
the LabWindows/CVI library include files.

cvi\include
LabWindows/CVI Programmer Reference Manual 3-28 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

ies

 you
are

lso

t
T,

ating
 loop
t
forms

er. It
board.

00ProRef.book : 06chap03.fm Page 29 Monday, March 9, 1998 3:23 PM
Compiling in an External Compiler for Linking in LabWindows/CVI
Use the LabWindows/CVI SDK and ANSI C include files. Specify the following director
as include paths in the external compiler.

cvi\include

cvi\include\ansi

cvi\sdk\include

Handling Hardware Interrupts under Windows 95/NT
Under Windows 3.1, you can handle hardware interrupts in a DLL. Under Windows 95,
must handle hardware interrupts in a VxD. Under Windows NT, you must handle hardw
interrupts in a kernel-mode driver. You cannot create VxDs and kernel-mode drivers in
LabWindows/CVI. Instead, you must create them in Microsoft Visual C/C++, and you a
must have the Microsoft Device Driver Developer Kit (DDK).

Under Windows 3.1, it is extremely difficult to call source code into LabWindows/CVI a
interrupt time. Making such a call is easier under Windows 95/NT. Under Windows 95/N
you can arrange for the VxD or kernel-mode driver to call a function in your
LabWindows/CVI source code after the interrupt service routine exits. You do this by cre
a separate thread for your interrupt callback function. The callback function executes a
that blocks its thread until the interrupt service routine signals it. Each time the interrup
service routine executes, it unblocks the callback thread. The callback thread then per
its processing and blocks again.

LabWindows/CVI includes source code template files for a VxD and a kernel mode driv
also includes a sample main program to show you how to read and write registers on a
There is one set of files for Windows 95 and another for Windows NT.

The files are in cvi\vxd\win95 and cvi\vxd\winnt . The file template.doc in each
directory contains some basic information.
© National Instruments Corporation 3-29 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 4-1 LabWindows/CVI Programmer

00ProRef.book : 06chap04.fm Page 1 Monday, March 9, 1998 3:23 PM
4

ard

ith a

ard
Windows 3.1
Compiler/Linker Issues

This chapter describes the different kinds of compiled modules available under
LabWindows/CVI for Windows 3.1 and includes programming guidelines for
modules you generate with external compilers.

Using Modules Compiled by LabWindows/CVI
You can generate a compiled .obj or .o module from a source file within LabWindows/CVI
using the Create Object File command in the Options menu of a Source window. You can
then use the compiled module in any of the methods described in the About Loadable
Compiled Modules section in Chapter 2, Using Loadable Compiled Modules, of this manual.

Using 32-Bit Watcom Compiled Modules
under Windows 3.1

You must adhere to the following rules for a 32-bit Watcom compiled module (.obj or
.lib file):

• You can call LabWindows/CVI library functions.

• If you make a call to the ANSI C Standard Library, you must include the
LabWindows/CVI header files instead of the Watcom header files.

• You cannot call Watcom C library functions outside the scope of the ANSI C Stand
Library.

• You can call open , close , read , write , lseek , or eof , but you must include
lowlvlio.h from LabWindows/CVI.

• You cannot call functions in the Windows Software Development Kit (SDK), install
interrupts, perform DMA, or access hardware directly. These tasks must be done w
Dynamic Link Library (DLL). The exception to this is that you can use the inp and outp
functions.

• You cannot define a function as PASCAL, pascal , or _pascal if you intend to call it
from source code in LabWindows/CVI. Also, you cannot use any non-ANSI-C-stand
Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

h

tures

ions
 vice
you

 as

00ProRef.book : 06chap04.fm Page 2 Monday, March 9, 1998 3:23 PM
keywords such as far , near , or huge in the declaration of functions to be called from
LabWindows/CVI source code.

• If your Watcom-compiled module performs floating point operations, you must use
Watcom Version 9.5 or later.

• Use the following options when you compile with Watcom IDE:

– Set the Project Target Environment to 32-bit Windows 3.x, and set the Image Type
to Library [.lib].

– Turn on the Disable Stack Depth Checking [-s] option.

– Turn on the Change Char Default to Signed [-j] option.

– Add -zw -d_NI_mswin16_ to the Other Options.

– Turn on the Generate as Needed [-of] option for Stack Frames.

– Turn on the No Debugging Information option.

– Turn on the In-line with Coprocessor [fpi87] option for Floating Point Model.

– Turn on the Compiler default option for the Memory Model.

– Turn on the 80486 Stack-Based Calling [-4s] option for the Target Processor.

• Use the following compiler flags when using wcc386 or wcc386p :

– -zw -s -4s -j -fpi87 -d0 -of -d_NI_mswin16_

– You can use optimization flags in addition to the f , and you can use other flags, suc
as -wn , which do not affect the generation of object code.

Using 32-Bit Borland or Symantec Compiled Modules
under Windows 3.1

In this section, CVI refers to both LabWindows/CVI and Watcom modules, while Borland
applies to both Borland and Symantec modules.

The following restrictions apply to Borland object modules:

• Borland packs bit fields in structures differently than CVI, so you cannot share struc
with bit fields between Borland and CVI.

• Borland returns structures, floats, and doubles differently than CVI. Therefore, funct
that return these types cannot be called from CVI if they are defined in Borland, or
versa. The exceptions are the ANSI C library functions that return doubles, which
can call from within Borland compiled modules.

Note This rule applies only to return values. You can use structs, floats and doubles
output parameters without limitation.
LabWindows/CVI Programmer Reference Manual 4-2 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

This

annot

.

ule.
LLs.

00ProRef.book : 06chap04.fm Page 3 Monday, March 9, 1998 3:23 PM
• ANSI C library functions div and ldiv return structures, and hence you cannot call
them from Borland compiled modules.

• The type long double is the same as double in CVI, while in Borland it is 10 bytes
long, so you cannot share objects of this type between Borland and CVI modules.
affects the "%Le" , "%Lf" , "%Lg" format specifiers of printf , sprintf , fprintf ,
scanf , sscanf , fscanf , and others.

• Because you cannot share structures with bit fields between Borland and CVI, you c
use the macros in stdio.h (getc , putc , fgetc , fputc) in Borland objects.

• wchar_t is defined as a char in CVI, whereas it is defined as a short in Borland,
so ANSI C library functions that return wchar_t or take wchar_t parameters do
not work.

Use the following options when you compile with Borland C 4.x:

• Set the target to be a Win32 application.

• Define _NI_mswin16_ .

• Set the include directories to point to cvi\include before other include directories.

• Turn off the Allocate Enums as Ints option.

• Turn off the Fast Floating Point option.

• Use the C calling convention.

If you use a file with a .c extension, Borland C++ 4.x compiles it as a C source file. If your
file has a .cpp extension, Borland C++ 4.x compiles it as a C++ source file; you must use
extern "C" for any functions or variables you want to access from a C file.

Use the following options when you compile with Symantec C++ 6.0:

• Set the target to be a Win32s executable.

• Define _NI_mswin16_.

• Set the include directories to point to cvi\include before any other include directories

• Set Structure Alignment to 1 byte.

• Turn off the Use Pascal Calling Convention option.

16-Bit Windows DLLs
You can call functions in a 16-bit DLL from source code or from a 32-bit compiled mod
You can compile your 16-bit DLL in any language using any compiler that generates D
If you want to program with DMA or interrupts, or access the Windows API, you must use a
Windows DLL.
© National Instruments Corporation 4-3 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

u

er,
 is that
urs.
ges
n

e

 a
he
you
can
you

tion
It
 DLL
d

ng

00ProRef.book : 06chap04.fm Page 4 Monday, March 9, 1998 3:23 PM
You must observe certain rules and restrictions in a DLL you want to use with
LabWindows/CVI. If you experience problems using a DLL in LabWindows/CVI,
you might have to contact the developer of the DLL to obtain modifications.

Because LabWindows/CVI is a 32-bit application, special glue code is required to
communicate with a 16-bit DLL. For some DLLs, LabWindows/CVI can automatically
generate this glue code from the include file when loading the DLL. For other DLLs, yo
have to modify the glue source code and compile it with Watcom into a .obj or .lib file.

The normal way of communicating with a DLL is by calling functions in the DLL. Howev
cases exist where you must use other communication methods. The most typical case
of an interrupt service routine in a DLL that notifies the application when an interrupt occ
This is done through a callback function. Also, LabWindows/CVI can recognize messa
posted by a DLL through the Windows Application Programming Interface (API) functio
PostMessage and initiate a callback function.

Helpful LabWindows/CVI Options for Working with DLLs
LabWindows/CVI provides two options that can be helpful when working with DLLs. Th
options can be found in the Run Options menu of the Project window:

• Enable the Check Disk Dates Before Each Run option when you iteratively modify
DLL or DLL glue code file and run a LabWindows/CVI test program that calls into t
DLL. By enabling the Check Disk Dates Before Each Run option, you ensure that
link the most recent version of the DLL and DLL glue code into your program. You
leave this option enabled at all times. The only penalty is a small delay each time
build or run the project.

• By default, LabWindows/CVI does not unload and reload DLLs between each execu
of your program. This eliminates the delay in reloading the DLLs before each run.
allows the DLLs to retain state information between each run. If, however, you use a
that does not work correctly across multiple program executions, enable the Reloa
DLLs Before Each Run option.

DLL Rules and Restrictions
To call into a 16-bit DLL from LabWindows/CVI 32-bit code, you must observe the followi
rules and restrictions for DLL functions:

• In the DLL header file, change all references to int into references to short .

• In the DLL header file, change all references to unsigned or unsigned int to
unsigned short .

• You can declare the functions in the DLL as PASCAL or as CDECL.

• You cannot use variable argument functions.
LabWindows/CVI Programmer Reference Manual 4-4 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

.

 the

d the

nce
ws

00ProRef.book : 06chap04.fm Page 5 Monday, March 9, 1998 3:23 PM
• You can use the argument types char , unsigned char , int , unsigned int , short ,
unsigned short , long , unsigned long , float , and double , as well as pointers to
any type, and arrays of any type. You can use typedefs for these types.

• You can use the return types void , char , unsigned char , int , unsigned int ,
short , unsigned short , long , and unsigned long , as well as pointers to any type
You can use typedefs for these types.

• You can use the return types float and double only if the DLL is created with a
Microsoft C compiler, and the functions returning floats or double are declared with
cdecl calling convention. You do not have to modify the glue code generated for
functions that return float or double values.

• In the DLL header file, enum sizes must be consistent between LabWindows/CVI an
compiler for the DLL.

typedef enum {

No_Error,

Device_Busy,

Device_Not_Found

} ErrorType;

The size of ErrorType is 2 bytes in Visual C++, whereas it is 1 byte in
LabWindows/CVI. To force LabWindows/CVI to treat ErrorType as 2 bytes, add
another enum value explicitly initialized to a 2-byte value, such as the following.

ErrorType_Dummy = 32767

• If the DLL you are using performs DMA on a buffer you pass to it, you might experie
a problem. The DLL might attempt to lock the buffer in memory by calling the Windo
SDK function GlobalPageLock . GlobalPageLock fails on buffers allocated with the
Watcom malloc function that LabWindows/CVI uses in 32-bit mode.

Write the DLL so that if GlobalPageLock fails, the DLL attempts to lock the buffer
with the following code:

int DPMILock (void *buffer, unsigned long size)

{

DWORD base;

unsigned sel, offset;

union _REGS regs;

sel = SELECTOROF(buffer);

offset = OFFSETOF(buffer);

base = GetSelectorBase(sel);

base = base+offset;

regs.x.ax = 0x600; /* DPMI lock memory function */

regs.x.bx = HIWORD(base);

regs.x.cx = LOWORD(base);

regs.x.di = LOWORD(size);
© National Instruments Corporation 4-5 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

ing

ave
try

e

s
te

00ProRef.book : 06chap04.fm Page 6 Monday, March 9, 1998 3:23 PM
regs.x.si = HIWORD(size);

int86(0x31, ®s, ®s);

return regs.x.cflag;

}

After the DMA is complete, you must unlock the buffer. You can unlock the buffer us
the DPMILock function, if you set regs.x.ax to 0x601 , instead of 0x600 .

• If you compile the DLL with the /FPi or /FPc switches or with no /FP switches
(/FPi is the default), the DLL uses the WIN87EM.DLL floating point emulator.
LabWindows/CVI does not use WIN87EM.DLL. If the DLL uses WIN87EM.DLL, use the
following strategy in the DLL to prevent conflicts:

1. Structure the code so that all functions that perform any floating-point math h
known entry and exit points. Ideally, specify a particular set of exported en
points as the only ways into the floating-point code.

2. Call the Windows SDK function FPInit in each of these entry points. Store th
previous signal handler in a function pointer.

3. If the DLL has its own exception handler, call signal to register the DLL’s own
signal handler.

4. Perform the floating-point math.

5. Upon exiting through one of the well-defined DLL exit points, call the Window
SDK function FPTerm to restore the previous exception handler and termina
the DLL’s use of WIN87EM.DLL.

typedef void (*LPFNSIGNALPROC) (int, int);

/* prototypes for functions in WIN87EM.d11 */

LPFNSIGNALPROC PASCAL_FPInit (void);

VOID PASCAL_FPTerm (LPFNSIGNALPROC);

void DllFunction (void)

{

LPFNSIGNALPROC OldFPHandler;

/* save the floating point state, and setup the */

/* floating point exception handler for this DLL. */

OldFPHandler = _FPInit ();

signal (SIGFPE, DLLsFPEHandler); /* optional */

.

.

.

LabWindows/CVI Programmer Reference Manual 4-6 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

 or
lue
lly

onous
n the

ple,

 that

fer

00ProRef.book : 06chap04.fm Page 7 Monday, March 9, 1998 3:23 PM
/* perform the computations */

.

.

.

/* restore the floating point state */

_FPTerm (OldFPHandler);

}

Note If you use Microsoft C to build the DLL, you might get a linker error for an
undefined symbol _acrtused2 . This error occurs only in Microsoft C
versions 7.00 and later. Include the following dummy function in your
DLL to fix this error. Also, when linking to the DLL, specify WIN87EM.LIB
as the first library to be linked.

void _acrtused2 (void)

{

}

DLL Glue Code
Because LabWindows/CVI is a 32-bit application, it does not use 16-bit import libraries
import statements in module definition files. Instead, LabWindows/CVI uses 32-bit DLL g
code. In some cases, it is sufficient to use glue code that LabWindows/CVI automatica
generates when it loads the DLL. However, you cannot use this method in the following
cases:

• The DLL requires special interface functions compiled outside of the DLL.

• You expect to pass arrays bigger than 64 K to functions in the DLL.

• You pass a pointer to a function in the DLL, and the DLL uses the pointer after the
function returns. For example, you pass an array to a function that starts an asynchr
I/O operation. The function returns immediately, but the DLL continues to operate o
array.

• You pass a function pointer to the DLL, and the DLL calls the function later. For exam
the DLL makes a direct callback into 32-bit code.

• You pass to the DLL a pointer that points to other pointers. Two examples of pointers
point to other pointers are an array of pointers and a structure pointer with pointer
members.

• The DLL returns pointers as return values or through reference parameters.

• The DLL exports functions by ordinal value only.

If your DLL falls into any of these categories, refer to the DLLs That Cannot Use Glue Code
Generated at Load Time section of this chapter for details on how to proceed. Otherwise, re
to the DLLs That Can Use Glue Code Generated at Load Time section, also in this chapter.
© National Instruments Corporation 4-7 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

ate

L

de

ue

lue

m.

00ProRef.book : 06chap04.fm Page 8 Monday, March 9, 1998 3:23 PM
DLLs That Can Use Glue Code Generated at Load Time
If your DLL can use glue code generated at load time, LabWindows/CVI automatically
generates the glue code based on the contents of the .h file it associates with the DLL when
it loads it.

Any functions declared as PASCAL, pascal , or _pascal in the DLL should be declared as
PASCAL in the .h file. LabWindows/CVI ignores the PASCAL keyword except when
generating the glue code.

Use only standard ANSI C keywords in the .h file. (The keyword PASCAL is the only
exception to this rule.) For example, do not use far , near , or huge .

Note You can create an object module that contains the glue code. If you do so,
LabWindows/CVI can load the DLL faster because it does not have to regener
and recompile the glue code. To create the object module, load the .h file into a
Source window and select Options»Generate DLL Glue Object. If the DLL
pathname is listed in the project, replace it with the object module file. If the DL
is not listed in the project, but is associated with a .fp file, make sure the object
module is in the same directory as the .fp file.

DLLs That Cannot Use Glue Code Generated at Load Time
If your DLL cannot use glue code generated at load time, you must generate a glue co
source file from the DLL include file using the Generate DLL Glue Source command from
the Options menu of a Source window. You must then compile the glue code using the
Watcom compiler to create a .obj or .lib file to be loaded with the DLL. If you also have
interface functions that must exist outside the DLL, you must combine them with the gl
code to form the .obj or .lib file.

Loading a DLL That Cannot Use Glue Code Generated
at Load Time
If you have a 32-bit Watcom compiled .obj or .lib file that contains glue code for a DLL,
LabWindows/CVI must load the .obj or .lib file first. For instance, if you want to use
x.dll and x.obj in your program, add x.obj to the project. Do not add x.dll to the
project. The .obj or .lib file causes LabWindows/CVI to load the .dll .

The .obj or .lib file must contain the glue code for the DLL. It is the presence of the g
code that indicates to LabWindows/CVI that a .dll is associated with the .obj or .lib file.

When LabWindows/CVI loads the .obj or .lib file and finds that it contains glue code, it
first looks for the .dll in the same directory as the .obj or .lib file. If it cannot find
the .dll , LabWindows/CVI looks for it using the standard Windows DLL search algorith
LabWindows/CVI Programmer Reference Manual 4-8 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

 it
hm.

e

I
tub

 of the
es
were

.

tside

code
piler.

 file.

00ProRef.book : 06chap04.fm Page 9 Monday, March 9, 1998 3:23 PM
Also, you can create a .pth file in the same directory as the .obj or .lib file with the same
base name. The .pth file must contain a simple filename or a full pathname of the DLL. If
is a simple filename, LabWindows/CVI uses the standard Windows DLL search algorit

Rules for the DLL Include File Used to Generate Glue Source
You can generate the DLL glue source file by opening the .h file for the DLL in a Source
window and selecting Generate DLL Glue Source from the Options menu. This command
prompts you for the name of a .h file. It puts the glue code in a .c file with the same path and
base name as the .h file. You must modify this .c file as this section describes and compil
it using the Watcom compiler. Refer to the Using 32-Bit Watcom Compiled Modules
under Windows 3.1 section of this chapter for information on how to use the Watcom
compiler with LabWindows/CVI.

If any of the functions in the DLL are declared as PASCAL, pascal , or _pascal , you must
declare them as PASCAL in the .h file you use to generate the glue code. LabWindows/CV
ignores the PASCAL keyword except for the purposes of generating the glue code. The s
function in the glue code is not declared as PASCAL. If you include this .h file in the glue
code, the Watcom compiler flags as an error the inconsistency between the declaration
function in the .h file and the definition of the stub function. If you include it in other modul
you compile under Watcom, calls to the function erroneously compile as if the function
PASCAL. You have two options:

• Have two separate .h files, one that includes the PASCAL keyword and one that does not
Use the one that does include the PASCAL keyword to generate the glue code only.

• Use conditional compilation so that Watcom ignores the PASCAL macro when it
compiles.

Only use standard ANSI C keywords in the .h file. The keyword PASCAL is the only
exception to this rule. For example, do not use far , near , or huge .

If the DLL Requires a Support Module outside the DLL
Support modules contain special interface functions that the DLL uses but that exist ou
of the DLL. If you are unsure whether the DLL requires a support module, try to build a
project in LabWindows/CVI with the DLL in the project list. If link errors exist in the form
of unresolved references, the DLL requires special interface functions. Get the source
for the interface functions, add it to the glue code, and compile using the Watcom com

If You Pass Arrays Bigger Than 64 K to the DLL
If you pass the DLL any arrays bigger than 64 K, you must modify the glue code source
For example, suppose you have a function in the DLL with the following prototype:

long WriteRealArray (double realArray[], long numElems);
© National Instruments Corporation 4-9 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

o

n.

00ProRef.book : 06chap04.fm Page 10 Monday, March 9, 1998 3:23 PM
In the glue code generated by LabWindows/CVI, there is a declaration of WriteRealArray
like that shown in the following example.

long WriteRealArray (double realArray[], long numElems)

{

long retval;

unsigned short cw387;

cw387 = Get387CW();

retval = (long)

InvokeIndirectFunction (__static_WriteRealArray, realArray,

 numElems);

Set387CW (cw387);

return retval;

}

Note The lines of code referencing cw387 are necessary only if the DLL function
performs floating point operations. They are innocuous and execute quickly, s
LabWindows/CVI adds them to the glue code automatically. If the DLL function
does not perform floating point operations, you can remove these lines.

If realArray can be greater than 64 K, you must modify the interface routine as show

long WriteRealArray (double realArray[], long numElems)

{

long retval;

unsigned short cw387;

DWORD size;

DWORD alias;

size = numElems * sizeof(double);

if (Alloc16BitAlias (realArray, size, &alias) <0)

 return < error code >;

cw387 = Get387CW();

retval = (long)

InvokeIndirectFunction (__static_WriteRealArray, alias,

numElems);

Set387CW (cw387);

Free16BitAlias (alias, size);

return retval;

}

LabWindows/CVI Programmer Reference Manual 4-10 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

urce

 for

00ProRef.book : 06chap04.fm Page 11 Monday, March 9, 1998 3:23 PM
You must also modify the call to GetIndirectFunctionHandle for WriteRealArray as
shown in the following code:

if (!(__static_WriteRealArray = GetIndirectFunctionHandle

 (fp, INDIR_PTR, INDIR_WORD, INDIR_ENDLIST)))

by changing INDIR_PTR to INDIR_DWORD.

If the DLL Retains a Buffer after the Function Returns
(an Asynchronous Operation)
If the DLL retains a buffer after the function returns, you must modify the glue code so
file. Suppose two functions exist. WriteRealArrayAsync operates just like
WriteRealArray , except that it returns before it completes writing the real array.
ClearAsyncWrite terminates the asynchronous I/O. The glue code interface functions
WriteRealArrayAsync and ClearAsyncWrite should be modified to resemble the
following example.

static DWORD gAsyncWriteAlias, gAsyncWriteSize;

long WriteRealArrayAsync (double realArray[], long numElems)

{

long retval;

unsigned short cw387;

DWORD size;

DWORD alias;

size = numElems * sizeof(double);

if (Alloc16BitAlias (realArray, size, &alias) < 0)

 return < error code >;

cw387 = Get387CW();

retval = (long)

InvokeIndirectFunction (__static_WriteRealArrayAsync, alias,

numElems);

Set387CW (cw387);

if (IsError (retval)) /* replace with macro to check if */

/* retval is error */

 Free16BitAlias (alias, size);

else {

 gAsyncWriteAlias = alias;

 gAsyncWriteSize = size;

}

return retval;

}

© National Instruments Corporation 4-11 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

run
. You
ame

ld add

e.

ies of

00ProRef.book : 06chap04.fm Page 12 Monday, March 9, 1998 3:23 PM
long ClearAsyncWrite (void)

{

/* because this does no floating point, you can remove */

/* the cw387 code */

long retval;

retval = (long) InvokeIndirectFunction(__static_ClearAsyncWrite);

if (!IsError (retval)) /* replace with macro to check if */

/* retval is error */

if (gAsyncWriteAlias != 0) {

Free16BitAlias (gAsyncWriteAlias,gAsyncWriteSize);

gAsyncWriteAlias = 0;

gAsyncWriteSize = 0;

}

return retval;

}

You can terminate LabWindows/CVI programs in the middle of execution and then re-
them. When you terminate the program, you should also terminate the asynchronous I/O
can arrange to be notified of changes in the run state by including a function with the n
RunStateChangeCallback in the .obj or .lib file associated with the DLL. You can add
this function to the glue code file. Refer to the Notification of Changes in Run State section
of Chapter 2, Using Loadable Compiled Modules, of this manual for a complete description
of the run state change notification. In the example we have been discussing, you shou
the following code.

#include "libsupp.h"

void CVICALLBACK __RunStateChangeCallback (int newState)

{

if (newState == kRunState_Stop)

 ClearAsyncWrite ();

}

If the DLL Calls Directly Back into 32-Bit Code
If the DLL calls directly back into 32-bit code, you must modify the glue code source fil
You can call functions defined in 32-bit source code directly from a DLL. Although this
method is not as straightforward as Windows messaging, it is not subject to the latenc
Window messaging. For more information about Windows messaging, refer to the
Recognizing Windows Messages Passed from a DLL section of this chapter.

Note If you need direct callbacks to occur at interrupt time because the latency of
Windows messaging is interfering with your application, contact National
Instruments for assistance.
LabWindows/CVI Programmer Reference Manual 4-12 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

K

LL,

se

00ProRef.book : 06chap04.fm Page 13 Monday, March 9, 1998 3:23 PM
You cannot pass pointers to 32-bit functions directly into 16-bit DLLs. The Windows SD
interface for this is very complex. Generate DLL Glue Source does not generate this code
for you. You must write your own glue code for passing function pointers to and from a D
and add it to the file that Generate DLL Glue Source generates.

Suppose a DLL contains the following functions:

long (FAR*savedCallbackPtr) (long);

long FAR InstallCallback(long (FAR*callbackPtr) (long))

{

savedCallbackPtr = callbackPtr;

}

long InvokeCallback(long data)

{

return (*savedCallbackPtr)(data);

}

After you use the Generate DLL Glue Source command to generate the glue code for the
functions, you must modify the code as follows.

Note Because direct callbacks must be declared far , and LabWindows/CVI cannot
compile far functions, you must declare a far function in the glue code and pass
it to the DLL. This far function calls the actual user function.

#undef MakeProcInstance /* Use version that does not */

/* convert pointer. */

#undef FreeProcInstance /* Use version that does not */

/* convert pointer. */

typedef struct { /* Holds resources required to register*/

/* the callback. */

int UserDefinedProcHandle;

CALLBACKPTR proc16;

FARPROC proc16Instance;

} CallbackDataType;

static CallbackDataType CallbackData;

static long (*UsersCallback)(long);

/* Define a 32-bit far callback whose address is passed to */

/* the DLL. It calls your function using function pointer */

/* stored in UsersCallback. */
© National Instruments Corporation 4-13 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

00ProRef.book : 06chap04.fm Page 14 Monday, March 9, 1998 3:23 PM
static long FAR CallbackHelper(long data)

{

return (*UsersCallback)(data);

}

/* Modified glue code for the function that installs the */

/* callback. */

long InstallCallback(long (*callback)(long))

{

long retval;

unsigned short cw387;

UsersCallback = callback; /* Store CVI 32-bit pointer */

/* in static variable. */

/* Create a 16-bit thunk for the 32-bit far function */

/* CallbackHelper */

if ((CallbackData.UserDefinedProcHandle =

GetProcUserDefinedHandle()) == 0)

return FALSE;/* Too many callbacks installed */

 /* or handles not freed. */

if (DefineUserProc16(CallbackData.UserDefinedProcHandle,

(PROCPTR) CallbackHelper, UDP16_DWORD,

UDP16_CDECL, UDP16_ENDLIST))

 goto failed;

if (!(CallbackData.proc16 =

GetProc16((PROCPTR)CallbackHelper,

CallbackData.UserDefinedProcHandle)))

 goto failed;

CallbackData.proc16Instance =

MakeProcInstance(CallbackData.proc16,

GetTaskInstance());

cw387 = Get387CW();

retval = (long)

InvokeIndirectFunction(__static_InstallCallback,

CallbackData.proc16Instance);

Set387CW(cw387);

return retval;
LabWindows/CVI Programmer Reference Manual 4-14 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

 that

ress
/CVI
it far

ffer
ters

r

00ProRef.book : 06chap04.fm Page 15 Monday, March 9, 1998 3:23 PM
failed:

FreeCallbackResources();

return FALSE;

}

/* Call this function after unregistering the callback. */

void FreeCallbackResources(void)

{

if (CallbackData.proc16Instance) {

FreeProcInstance(CallbackData.proc16Instance);

CallbackData.proc16Instance = 0;

}

if (CallbackData.proc16) {

ReleaseProc16(CallbackData.proc16);

CallbackData.proc16 = 0;

}

if (CallbackData.UserDefinedProcHandle) {

FreeProcUserDefinedHandle(CallbackData.UserDefinedProcHandle);

CallbackData.UserDefinedProcHandle = 0;

}

}

If the DLL Returns Pointers
DLLs return pointers that fall into the following two classes.

• Pointers to memory that LabWindows/CVI allocates, that you pass into the DLL, and
the DLL later returns

You must map these pointers back into normal 32-bit pointers that you can use in
LabWindows/CVI code. Use the function MapAliasToFlat to convert these pointers.

• Pointers to memory that a DLL allocates

Because these pointers point to memory that is not in the LabWindows/CVI flat add
space, you cannot map them back into the normal 32-bit pointers that LabWindows
uses. You can access them in Watcom object code by first converting them to 32-b
pointers using the function MK_FP32.

To access them in LabWindows/CVI source code you must copy the data into a bu
you allocate in LabWindows/CVI. Notice that you cannot pass 16- or 32-bit far poin
to LabWindows/CVI library functions, and that LabWindows/CVI does not provide
access to the Watcom string and memory buffer manipulation functions that take fa
pointers as arguments. You must write the loops to copy the data.
© National Instruments Corporation 4-15 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

00ProRef.book : 06chap04.fm Page 16 Monday, March 9, 1998 3:23 PM
Case 1
Assume the DLL has the following function:

char *f(char *ptr)

{

sprintf(ptr, "hello");

return ptr;

}

Then assume that a program in LabWindows/CVI uses the function f as follows:

char buffer[240];

char *bufptr;

bufptr = f(buffer);

printf("%s", bufptr);

You would have to modify the glue code as shown here:

char * f(char *ptr)

{

char * retval;

unsigned short cw387;

cw387 = Get387CW();

retval = (char *) InvokeIndirectFunction(__static_f, ptr);

Set387CW(cw387);

retval = MapAliasToFlat(retval); /* Add this line to */

/* glue code. */

return retval;

}

Case 2
Assume the DLL has the following function:

char *f(void)

{

char *ptr;

ptr = malloc(100);

sprintf(ptr, "hello");

return ptr;

}

LabWindows/CVI Programmer Reference Manual 4-16 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

00ProRef.book : 06chap04.fm Page 17 Monday, March 9, 1998 3:23 PM
Then assume that a program in LabWindows/CVI uses the function f as follows:

char *bufptr;

bufptr = f();

printf("%s", bufptr);

You would have to modify the glue code as shown here:

char * f(char *ptr)

{

char *retval;

unsigned short cw387;

char *ptr, *tmpPtr, _far *farPtr32, _far *tmpFarPtr32;

int i;

cw387 = Get387CW();

retval = (char *) InvokeIndirectFunction(__static_f, ptr);

Set387CW(cw387);

/* convert the 16 bit far pointer to a 32 bit far pointer*/

farPtr32 = MK_FP32(retval);

tmpFarPtr32 = farPtr32;

/* Calculate the length of the string. Cannot call strlen*/

/* because it does not accept far pointers. */

i = 0

while (*tmpFarPtr32++)

i++;

/* Allocate buffer from CVI memory and copy in data. */

if ((ptr = malloc(i + 1)) != NULL) {

tmpFarPtr32 = farPtr32;

tmpPtr = ptr;

while (*tmpPtr++ = *tmpFarPtr32++);

}

return ptr;

}

© National Instruments Corporation 4-17 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

 the
vert

ue

00ProRef.book : 06chap04.fm Page 18 Monday, March 9, 1998 3:23 PM
If a DLL Receives a Pointer that Points to Other Pointers
Assume the following DLL functions:

int f(char *ptrs[]);

struct x {

char *name;

};

int g(struct x *ptr);

For the function f , the glue code that LabWindows/CVI generates converts the pointer to
array ptrs to a 16-bit far pointer when you pass it to the DLL function, but does not con
the pointers inside the array (ptrs[0], ptrs[1], ...) . Similarly, for the functiong, the
glue code that LabWindows/CVI generates converts the pointer to the structure (ptr), but not
the pointer inside the structure (name).

If your DLL has functions with these types of parameters, then your DLL cannot use gl
code automatically generated at load time. You can use the Generate DLL Glue Source
command to generate glue code and then modify it in the following manner.

1. Before the call to InvokeIndirectFunction ,

a. Save the hidden pointer in a local variable.

b. Replace the hidden pointer with a 16-bit alias by calling Alloc16BitAlias .

2. After the call to InvokeIndirectFunction ,

a. Free the 16-bit alias by calling Free16BitAlias .

b. Restore the hidden pointer with the value you saved in step 1.

For the functions f and g, the glue code that LabWindows/CVI generates looks like the
following excerpt:

int f(char **ptrs)

{

int retval;

unsigned short cw387;

cw387 = Get387CW();

retval = (int) InvokeIndirectFunction(__static_f, ptrs);

Set387CW(cw387);

return retval;

}

int g(struct x *ptr)

{

int retval;

unsigned short cw387;
LabWindows/CVI Programmer Reference Manual 4-18 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

00ProRef.book : 06chap04.fm Page 19 Monday, March 9, 1998 3:23 PM
cw387 = Get387CW();

retval = (int) InvokeIndirectFunction(__static_g, ptr);

Set387CW(cw387);

return retval;

}

After you make the necessary changes, the code should appear as follows:

/* Assume NUM_ELEMENTS is the number of pointers in the input */

/* array. Assume ITEM_SIZE is the number of bytes pointed */

/* to by each pointer. If you do not know ITEM_SIZE, but you */

/* know that it is 64K or less, you can use 64K as ITEM_SIZE. */

int f(char **ptrs)

{

int retval;

unsigned short cw387;

int i;

char *savedPointers[NUM_ELEMENTS];

/* change the pointers to 16-bit far pointers */

for (i = 0 ; i < NUM_ELEMENTS; i++) {

savedPointers[i] = ptrs[i];

if (Alloc16BitAlias(ptrs[i], ITEM_SIZE, &ptrs[i]) == -1) {

/* failed to allocate an alias; restore */

/* pointers. */

while (i--)

ptrs[i] = savedPointer[i];

return < error code >;

}

}

cw387 = Get387CW();

retval = (int) InvokeIndirectFunction(__static_f, ptrs);

Set387CW(cw387);

/* Restore the pointers. */

for (i = 0 ; i < NUM_ELEMENTS; i++) {

 Free16BitAlias(ptrs[i], ITEM_SIZE);

 ptrs[i] = savedPointers[i];

}

return retval;

}

© National Instruments Corporation 4-19 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

t
 of

l

00ProRef.book : 06chap04.fm Page 20 Monday, March 9, 1998 3:23 PM
int g(struct x *ptr)

{

int retval;

unsigned short cw387;

char *savedPointer;

savedPointer = ptr->name;

if (Alloc16BitAlias(ptr->name, ITEM_SIZE, &ptr->name) == -1)

return < error code >;

cw387 = Get387CW();

retval = (int) InvokeIndirectFunction(__static_g, ptr);

Set387CW(cw387);

Free16BitAlias(ptr->name, ITEM_SIZE);

ptr->name = savedPointer;

return retval;

}

DLL Exports Functions by Ordinal Value Only
If your DLL does not export its functions by name, but by ordinal number only, you mus
modify the GetProcAddress function calls in the glue code. Instead of passing the name
the function as the second parameter, pass PASS_WORD_AS_POINTER(OrdinalNumber) ,
where OrdinalNumber is the ordinal number for the function. For example, if the ordina
number for the function InstallCallback is 5, change the glue code as follows.

Generated Glue Code:

if (!(fp = GetProcAddress(DLLHandle,"InstallCallback")))

{

funcname = "_InstallCallback";

goto FunctionNotFoundError;

}

Change to:

if (!(fp = GetProcAddress(DLLHandle, PASS_WORD_AS_POINTER(5))))

{

funcname = "_InstallCallback";

goto FunctionNotFoundError;

}

LabWindows/CVI Programmer Reference Manual 4-20 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

 is that
t
tion.

ging.

e

ter 4,
l

 DLL
s

nt to

ory

lly by

00ProRef.book : 06chap04.fm Page 21 Monday, March 9, 1998 3:23 PM
Recognizing Windows Messages Passed from a DLL
The normal way of communicating with a DLL is to call functions in the DLL. However,
cases exist where other communication methods are necessary. The most typical case
of an interrupt service routine in a DLL that must notify the application that the interrup
occurred. In cases like this, you must communicate with the DLL through a callback func

LabWindows/CVI recognizes messages posted by a DLL through the Windows SDK
functionPostMessage , and can initiate a user callback function. This method is useful
for hardware interrupts, but it is subject to the latency associated with Windows messa
LabWindows/CVI uses RegisterWinMsgCallback , UnRegisterWinMsgCallback , and
GetCVIWindowHandle to recognize Windows messages from a DLL. You can call thes
functions from a module compiled in Watcom or from source code.

For complete information on these functions, refer to the function descriptions in Chap
User Interface Library Reference, of the LabWindows/CVI User Interface Reference Manua.

To use these functions, call RegisterWinMsgCallback and GetCVIWindowHandle . Pass
their return values, the message number and the window handle, to the DLL. When the
sends a message, it calls PostMessage with these values. When LabWindows/CVI receive
the message, it calls the callback function.

Note LabWindows/CVI can receive the message only when it is processing events.
LabWindows/CVI processes events when it is waiting for user input. If the
program you run in LabWindows/CVI does not call RunUserInterface ,
GetUserEvent , or scanf , or if it does not return from a User Interface Library
callback, events will not be processed. You can remedy this in the program by
periodically calling the User Interface Library function ProcessSystemEvents .

Creating 16-bit DLLs with Microsoft Visual C++ 1.5
Be sure to consider the following issues or project options when you create a DLL with
Microsoft Visual C++ 1.5:

• Every function you call from outside the DLL must be far , exported, and must load the
data segment into the DS register. The function must load the DS register if you wa
use any non-local variables in a function.

• Use the large or huge memory model. The savings you gain by using smaller mem
models is not worth having to use the far keyword throughout your code. This project
option is in Compiler»Memory Model»Segment Setup.

• You can make the compiler load the data segment into the DS register automatica
using the SS!=DS, DS loaded on function entry project option in Compiler»Memory
Model»Segment Setup.

• If you try to use the optimize entry code option (/GD), by selecting
Compiler»Windows»Prolog/Epilog»Generate Prolog/Epilog For, it conflicts with the
© National Instruments Corporation 4-21 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

of the

nt to

ory

he

es

n the

00ProRef.book : 06chap04.fm Page 22 Monday, March 9, 1998 3:23 PM
/Au option. You can either not use this option by setting it to None, or insert __loadds
in front of every function you export from the DLL.

• You can make the compiler export a function by inserting __export between the return
type and the function name, or by adding the function name to the exports section
.def file.

• If you add the function name to the exports section of the .def file, remember to convert
the name to all caps if you use the PASCAL calling convention, or pre-append an
underscore if you use the CDECL calling convention.

• Byte align structure members by choosing 1 Byte for the Options»Project»Compiler»
Code Generation»Struct Member Byte Alignment.

Creating 16-bit DLLs with Borland C++
Consider the following issues or project options when you create a DLL with
Borland C++ 4.x:

• Every function you call from outside the DLL must be far , exported, and must load the
data segment into the DS register. The function must load the DS register if you wa
use any non-local variables in a function.

• Use the large or huge memory model. The savings you gain by using smaller mem
models is not worth having to use the far keyword throughout your code. This project
option is in 16-bit Compiler»Memory Model»Mixed Model Override.

• You can make the compiler load the data segment into the DS register by setting t
project option 16-bit Compiler»Memory Model»Assume SS Equals DS to Never, or
by inserting _loadds in front of every function you export from the DLL.

• You can make the compiler export a function by inserting _export between the return
type and the function name, adding the function name to the exports section of the .def
file, or setting the option 16-bit Compiler»Entry/Exit Code»Windows DLL, all
functions exportable.

• If you add the function name to the exports section of the .def file, remember to convert
the name to all caps if you use the PASCAL calling convention, or pre-append an
underscore if you use the CDECL calling convention. Also, set the Generate Underscor
option in Compiler»Compiler Output .

• Turn off the Allocate Enums as Ints option in Compiler»Code Generation.

• Set the Data Alignment options to Byte in 16-bit Compiler»Processor.

• Turn off the Case Sensitive Link and Case Sensitive Exports and Imports options i
Linker»General.

• Do not use the Linker Goodies options in Linker»16-bit Linker .
LabWindows/CVI Programmer Reference Manual 4-22 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

he

s

.

00ProRef.book : 06chap04.fm Page 23 Monday, March 9, 1998 3:23 PM
DLL Search Precedence
LabWindows/CVI finds a DLL file in the following ways for Windows 3.1:

• If the .dll file is associated with a .fp file, LabWindows/CVI uses the following search
precedence to find the DLL.

1. If a .pth file with the same full path name as the .fp file is in the project,
LabWindows/CVI uses the standard Windows DLL search algorithm. The .pth
file must contain the name of the .dll file, such as mystuff.dll . It must
contain an absolute path or a simple filename.

2. If a .dll file with the same full path name as the .fp file is in the project,
LabWindows/CVI uses the absolute path of the .dll file in the project to load
the .dll file.

3. If a .pth file with the same base name as the .fp file is in the same directory as
the .fp file and a .lib or .obj file of the same base name does not exist in t
same directory, LabWindows/CVI uses the standard Windows DLL search
algorithm. The .pth file must contain the name of the .dll file, such as
mystuff.dll . It must not contain any directory names or slashes.

4. If a .dll file with the same base name as the .fp file is in the same directory as
the .fp file, LabWindows/CVI loads the .dll file as long as no .lib , .obj ,
or .pth file of the same base name appears in the same directory.

5. If a .pth or .dll file does not appear in the same directory as the .fp file,
LabWindows/CVI uses the standard Windows search algorithm to look for a
DLL with the same base name as the .fp file. Thus, if a DLL with the same base
name is in the windows or windows\system directory or a directory listed in
your PATH environment variable, LabWindows/CVI finds it.

DLLs for VXIplug&play drivers are not in the same directory as the .fp files, but the
directory that contains the DLL is listed in the PATH environment variable. Therefore,
Step 5 makes it easier for you to use VXIplug&play instrument driver DLLs in
LabWindows/CVI for Windows 3.1.

• If the .dll file is not associated with a .fp file, LabWindows/CVI uses the following
search precedence to find the DLL:

1. If a .pth file is in the project list, LabWindows/CVI uses the standard Window
DLL search algorithm. The .pth file must contain the name of the .dll file,
such as mystuff.dll . It must contain an absolute path or a simple filename

2. If the .dll file is in the project list, then LabWindows/CVI uses the absolute
pathname to find the .dll file.
© National Instruments Corporation 4-23 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

n

00ProRef.book : 06chap04.fm Page 24 Monday, March 9, 1998 3:23 PM
• If you call LoadExternalModule on the .dll file, then

– If you specify it with an absolute pathname, LabWindows/CVI loads that file.

– If you specify it with a relative pathname, LabWindows/CVI searches for the .dll
file in the following places and order indicated.

1. In the project list.

2. In the directory in which the project file is located.

3. Among other modules already loaded.

4. In the directories specified in the documentation for the Windows SDK
LoadLibrary function. In this case, the include file for the DLL must be i
the project or in one of the include paths you specify in the Include Paths
command in the Options menu of the Project window.
LabWindows/CVI Programmer Reference Manual 4-24 © National Instruments Corporation

© National Instruments Corporation 5-1 LabWindows/CVI Programmer

00ProRef.book : 06chap05.fm Page 1 Monday, March 9, 1998 3:23 PM
5

I for

VI.
ed

ink
m

es.

me

 the

UNIX Compiler/Linker Issues

This chapter describes the kinds of compiled modules available under LabWindows/CV
UNIX and includes programming guidelines for modules you generate with external
compilers.

Calling Sun C Library Functions
You can call functions in the Sun Solaris C libraries from source code in LabWindows/C
LabWindows/CVI automatically links your program to the following static libraries, locat
in the /usr/lib directory, when you build the project.

Solaris 1: libm.a, libc.a

Solaris 2: libsocket.a, libnsl.a, libintl.a, libm.a, libc.a

When you create a standalone executable, LabWindows/CVI invokes the Sun Solaris l
editor (ld) to link your program to the LabWindows/CVI dynamic library and to the syste
libraries. By default, the Sun Solaris link editor uses the dynamic versions of the librari
LabWindows/CVI passes the following linking options to the Sun Solaris link editor:

Solaris 1: -lm -ldl -lc

Solaris 2: -lsocket -lnsl -lintl -lm -lthread -lc

In general, you can use the header files that Sun provides for these libraries in the
/usr/include directory. For the ANSI C functions, however, use the header files that co
with LabWindows/CVI.

Restrictions on Calling Sun C Library Functions
You cannot call any Sun C Library function that uses data types incompatible with the
LabWindows/CVI compiler or libraries. In particular, you must not call functions that use
long double data type. In LabWindows/CVI the long double data type has 8 bytes, but the
Sun libraries expect a 16-byte object.

Under Solaris 2, you must not call any function that uses the long long data type.
LabWindows/CVI does not recognize this non-ANSI type.
Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

c
e Sun

ur
f the
rsion

ared
ior.

 the
 in

All
d
ent

00ProRef.book : 06chap05.fm Page 2 Monday, March 9, 1998 3:23 PM
Using Shared Libraries in LabWindows/CVI
In the LabWindows/CVI development environment, you can link your programs to stati
libraries, but not to shared libraries. If you have to use a shared library, you must use th
Solaris linker (ld) to build your application. Refer to the Creating Executables that Use the
LabWindows/CVI Libraries section later in this chapter for more information on using
external compilers and the Sun linker.

If you have both shared and static versions of a library, you can develop and debug yo
application in the LabWindows/CVI development environment using the static version o
library. You can then create your final executable with the Sun linker using the shared ve
of the library.

Using dlopen
The Sun Solaris dlopen function allows you to load shared libraries from your program
dynamically. Although this function can work in some cases when running in
LabWindows/CVI, it can make LabWindows/CVI unstable. If you use dlopen to load shared
libraries in a program you run in LabWindows/CVI, the shared libraries might link to the
system libraries the LabWindows/CVI environment uses. As a result, functions in the sh
library might modify the LabWindows/CVI environment and cause unpredictable behav

The LabWindows/CVI Run-Time Engine
as a Shared Library

The LabWindows/CVI development environment contains many built-in libraries such as
User Interface Library and Utility Library. LabWindows/CVI also provides these libraries
the form of a standalone shared library called the LabWindows/CVI Run-time Engine.
executables that call LabWindows/CVI library functions use the Run-time Engine share
library. This is true whether you build the executable in the LabWindows/CVI developm
environment or with an external compiler and the Sun Solaris linker.
LabWindows/CVI Programmer Reference Manual 5-2 © National Instruments Corporation

Chapter 5 UNIX Compiler/Linker Issues

ly
your

ith

ed

ent,

the
link

r

un
I

00ProRef.book : 06chap05.fm Page 3 Monday, March 9, 1998 3:23 PM
Creating Executables that Use the
LabWindows/CVI Libraries

You can build executables that use the LabWindows/CVI libraries in two ways:

• You can build an executable in the LabWindows/CVI development environment by
selecting the Create Standalone Executable command in the Build menu of the Project
window. When you do so, LabWindows/CVI invokes the Sun Solaris linker (ld) to link
your programs to the Run-time Engine shared library.

• You can use an external compiler and linker to create an executable that uses the
Run-time Engine shared library. Use the Generate Makefile command in the Build menu
of the Project window to generate a UNIX makefile that corresponds to the current
loaded project and libraries. The makefile invokes an external compiler to compile
source files, and then it invokes the Sun Solaris linker (ld) to link the compiled files with
the Run-time Engine shared library.

Compatible External Compilers
You can use the following external ANSI C compilers to compile source files for linking w
the LabWindows/CVI Run-time Engine shared library.

• GNU C Compiler (gcc)

• Sun C Compiler (cc and acc)

Note Under Solaris 2.4, when linking the LabWindows/CVI Shared Library with
external ANSI C compiler, the compiler displays a warning that states the shar
library has an invalid type. You can ignore this warning.

Static and Shared Versions of the ANSI C and Other Sun Libraries
When you build a project for execution in the LabWindows/CVI development environm
LabWindows/CVI links your program to the static versions of the Sun Solaris libraries
(libc.a and libm.a). On the other hand, when you create a standalone executable in
LabWindows/CVI development environment, LabWindows/CVI invokes the Sun Solaris
editor (ld) to link your program to the shared versions of the libraries (libc.so and
libm.so). Similarly, when you generate a UNIX makefile by invoking the Generate
Makefile command from the Build Menu of the Project window, the makefile contains linke
commands to use the shared versions of the libraries.

Thus, when you run your programs as executables, you use a different version of the S
libraries (including the ANSI C library) than when you run them in the LabWindows/CV
development environment. Your program might exhibit slightly different behavior as a
standalone executable than when run in the development environment.
© National Instruments Corporation 5-3 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

 an

put

not

am

00ProRef.book : 06chap05.fm Page 4 Monday, March 9, 1998 3:23 PM
Non-ANSI Behavior of Sun Solaris 1 ANSI C Library
The C library that comes with Sun Solaris 1 (SunOS 4.1.x) does not comply with the ANSI C
standard as follows:

• Some ANSI C functions are missing from the library.

• Some library functions have different behavior than the ANSI standard specifies.

LabWindows/CVI corrects these problems by adding a library, libcfix.a , that
replaces and supplements the Sun Solaris library as necessary. The Solaris 1 ANSI C Library
Implementation section contains more information about how LabWindows/CVI provides
ANSI C library on Solaris 1.

LabWindows/CVI Implements printf and scanf
Although the Sun Solaris libraries provide the ANSI C family of functions for formatted in
and output (scanf , printf , and others), LabWindows/CVI provides special versions of
these functions for the following reasons:

• The LabWindows/CVI versions of these functions provide run-time error checking
available with Sun Solaris versions.

• The Sun Solaris 1 version of these functions do not comply fully with the ANSI C
standard.

• The Sun Solaris versions of these functions do not work with the LabWindows/CVI
implementation of the long double data type.

For standalone executables, these functions come in a separate static library,
libcviprintf.a , in the lib subdirectory of the LabWindows/CVI installation directory.
When you create an executable in LabWindows/CVI, LabWindows/CVI links your progr
to this static library.

Main Function Must Call InitCVIRTE
If your program calls any functions from the LabWindows/CVI libraries, you must call
InitCVIRTE to initialize the libraries from the executable. This function takes three
arguments. The first and third arguments to this function must always be 0 for UNIX
applications. The second must be the same value as the second parameter of your main
function. InitCVIRTE returns 0 if it fails.

You do not have to call InitCVIRTE when you run your program in the LabWindows/CVI
development environment because LabWindows/CVI always initializes the libraries.
However, if you do not call InitCVIRTE , your executable cannot work. For this reason,
LabWindows/CVI Programmer Reference Manual 5-4 © National Instruments Corporation

Chapter 5 UNIX Compiler/Linker Issues

u
 can

the
e of

me).

n you
f the
 not
 many
ram
pts.

, the run
eport

oth in
 put

00ProRef.book : 06chap05.fm Page 5 Monday, March 9, 1998 3:23 PM
National Instruments recommends that you always include source code similar to the
following example in your program.

int main(int argc, char *argv[])

{

if (InitCVIRTE(0, argv, 0) == 0) {

return 1;/* Failed to initialize */

}

/* your program code here */

}

If you pass NULL for the second argument to InitCVIRTE , your program might still work,
but with the following limitations:

• Your executable cannot accept the -display command line argument. As a result, yo
cannot specify an X display on the command line for your program to use. You still
use the DISPLAY environment variable to specify a different X display.

• LoadPanel , LoadExternalModule , DisplayImageFile , SavePanelState ,
RecallPanelState , and other functions that normally use the directory of the
executable to search for files, use the current working directory instead. If you run
executable from a directory other than the one that contains your executable, som
these functions might fail to find files.

Run State Change Callbacks Are Not Available in Executables
When you use a compiled module in LabWindows/CVI, you can arrange for
LabWindows/CVI to notify it of a change in execution status (start, stop, suspend, resu
You do this through a function called __RunStateChangeCallback . The Notification of
Changes in Run State section, in Chapter 2, Using Loadable Compiled Modules, describes
this in detail.

The run state change callback capability in LabWindows/CVI is necessary because whe
run a program in the LabWindows/CVI development environment, it executes as part o
LabWindows/CVI process. When your program terminates, the operating system does
release resources as it does when a process terminates. LabWindows/CVI releases as
resources as it can, but your compiled module might have to do more. Also, if the prog
suspends for debugging purposes, your compiled module might have to disable interru

When you run a standalone executable, it always executes as a separate process. Thus
state change callback facility is not necessary and does not work. External compilers r
link errors when you define __RunStateChangeCallback in more than one object file. If
you require a run state change callback in a compiled module that you intend to use b
LabWindows/CVI and an external compiler, National Instruments recommends that you
the callback function in a separate source file and create a library (.a) instead of an object file.
© National Instruments Corporation 5-5 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

/CVI

his

rent

s 1.

aders

u

f

00ProRef.book : 06chap05.fm Page 6 Monday, March 9, 1998 3:23 PM
Using Externally Compiled Modules
In general, you can load objects compiled with the Sun compilers and the GNU gcc compiler
into LabWindows/CVI, with a few restrictions.

Restrictions on Externally Compiled Modules
You can use externally compiled modules with the following restrictions:

• The objects must not use any data types that are incompatible with the LabWindows
compiler or libraries. Incompatible data types include the following:

– long double with any Sun compilers. A Sun compiler implements long double
as a 16-byte object, but LabWindows/CVI implements it as an 8-byte object.

– long long with the Solaris 2 Sun compiler. LabWindows/CVI does not support t
non-ANSI type.

– Any enumeration type. Many compilers implement enumeration types with diffe
sizes and values.

• You cannot load a Solaris 2 object file when you run LabWindows/CVI under Solari
However, you can load Solaris 1 objects when you run under Solaris 2.

Compiling Modules With External Compilers
You can compile external modules using LabWindows/CVI header files instead of the he
the compiler supplies. To compile this way, you must define the preprocessor macro
_NI_sparc_ to the value 1 for Solaris 1 or to the value 2 for Solaris 2.

When using the Sun ANSI C compiler, use the -I flag to add the LabWindows/CVI include
directory to the search list, as shown in the following command lines:

Solaris 1: acc -Xc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

Solaris 2: cc -Xc -I/home/cvi/include -D_NI_sparc_=2 -c mysource.c

When using the GNU compiler, use the -nostdinc flag to disable the standard include files
and the -I flag to add the LabWindows/CVI include directory to the search list. Also, yo
must use the -ansi flag. For example, to compile the file mysource.c using
LabWindows/CVI headers under Solaris 1, use the following command line.

gcc -ansi -nostdinc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

You might see warnings about conflicting types for the built-in functions memcmp and
memcpy, but you can ignore them.

Note These examples assume that /home/cvi/include is the LabWindows/CVI
header files directory. The actual path depends on how you install your copy o
LabWindows/CVI.
LabWindows/CVI Programmer Reference Manual 5-6 © National Instruments Corporation

Chapter 5 UNIX Compiler/Linker Issues

C

, not

I

lers

I

ls
h

lled
ave
I

hat
l
or

00ProRef.book : 06chap05.fm Page 7 Monday, March 9, 1998 3:23 PM
You cannot use the non-ANSI C Sun compiler cc because it does not recognize some ANSI
constructs in the header files, such as function prototypes and the keywords const , void , and
volatile .

Locking Process Segments into Memory Using plock()
You can use the UNIX function plock to lock the text and data segments of your program
into memory. However, this function locks all segments of the LabWindows/CVI process
just the segments associated with your program. Also, because the text segments of
LabWindows/CVI programs actually reside in the data segment of the LabWindows/CV
process, you must lock both text and data segments, using plock(PROCLOCK) , in order to
lock all text into memory.

Note Your LabWindows/CVI process must have superuser privileges to use the plock
function.

UNIX Asynchronous Signal Handling
The following signals have special meaning in LabWindows/CVI:

• SIGPOLL (SIGIO) and SIGPIPE —The LabWindows/CVI TCP Library installs
signal handlers for SIGPOLL (SIGIO) and SIGPIPE . If you use the TCP Library and you
want to install handlers for these signals, you must call the LabWindows/CVI hand
when your handlers are called. If you attempt to set the signal handler to SIG_DFL for
these signals while running in the LabWindows/CVI environment, LabWindows/CV
restores its own handlers.

• SIGINT and SIGQUIT —Normally, the operating system generates these two signa
when you type certain keystrokes (<Ctrl-C> and <Ctrl-\>) in the window from whic
you invoke LabWindows/CVI. If one of these signals occurs while your program is
running and you have not installed a handler for it, LabWindows/CVI suspends
your program the next time it calls a function that processes events (such as
ProcessSystemEvents). If your program does not call any event-processing
functions, it continues to run.

• SIGTERM —LabWindows/CVI treats SIGTERM as a stronger version of SIGINT and
SIGQUIT. If this signal occurs while your program is running and you have not insta
a handler for it, LabWindows/CVI terminates the program, gives you a chance to s
your files, and exits. If SIGTERM occurs when no program is running, LabWindows/CV
exits immediately.

• SIGBUS, SIGFPE, SIGILL, and SIGSEGV—These signals exist to allow for
hardware exceptions. Because execution cannot continue beyond the instruction t
caused the exception, LabWindows/CVI always catches these signals. If this signa
occurs while your program is running, LabWindows/CVI reports a fatal run-time err
© National Instruments Corporation 5-7 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

ccurs

y

 C

d for

with
tions.

ces

00ProRef.book : 06chap05.fm Page 8 Monday, March 9, 1998 3:23 PM
and suspends operation at the statement that caused the exception. If this signal o
when no program is running, LabWindows/CVI exits immediately.

You cannot use signal , sigaction , sigset , or sigvec to make your program ignore the
signals this section lists.

Note If your program begins to loop indefinitely, you can often suspend execution b
sending a signal to the LabWindows/CVI process as follows:

1. Use the ps command to identify the process number of LabWindows/CVI.

2. Send the kill -SIGNAL pid command to that process. For example, if the
LabWindows/CVI process number is 3478, the command kill -INT 3478
sends the SIGINT signal to LabWindows/CVI. When you want to suspend
execution of your program in LabWindows/CVI, try using SIGINT or SIGQUIT.
If sending the SIGINT or SIGQUIT signal fails, you must use the stronger
SIGTERM signal, which terminates not just your program but also
LabWindows/CVI.

Note Some signals can cause LabWindows/CVI to dump core you are running a
program that does not install handlers for them.

Solaris 1 ANSI C Library Implementation
The C library that comes with Sun Solaris 1 (SunOS 4.1.x) does not comply with the ANSI C
standard as follows:

• Some ANSI C functions are missing from the library.

• Some library functions have different behavior than the ANSI standard specifies.

LabWindows/CVI corrects these problems by linking your programs to a supplemental
library libcfix.a , which is in the lib subdirectory of the LabWindows/CVI installation
directory. This library contains replacement functions for some Sun Solaris functions an
the ANSI functions that are not available in the Sun Solaris library. The names of the
replacement functions differ from the Sun Solaris function names and do not interfere
programs or libraries that depend upon the non-ANSI behavior of some Sun Solaris func
The LabWindows/CVI ANSI header files contain macro definitions for the replacement
functions. When you compile with the LabWindows/CVI headers, your program referen
the LabWindows/CVI replacement functions instead of the Sun Solaris versions.

Consider the case of realloc , which LabWindows/CVI replaces with _cvi_realloc . The
Sun Solaris 1 implementation of the realloc function fails when the first argument is
NULL. The ANSI standard requires that realloc accept NULL as a first argument. In the
library libcfix.a , LabWindows/CVI defines _cvi_realloc , which treats a NULL
argument as the ANSI standard prescribes. The LabWindows/CVI header file stdlib.h
LabWindows/CVI Programmer Reference Manual 5-8 © National Instruments Corporation

Chapter 5 UNIX Compiler/Linker Issues

rs

00ProRef.book : 06chap05.fm Page 9 Monday, March 9, 1998 3:23 PM
contains the following macro definition so that _cvi_realloc replaces all references to
realloc in your program.

 #define realloc _cvi_realloc

Note Object files you previously compiled using either older LabWindows/CVI heade
or Sun Solaris headers do not reference the replacement functions. You must
recompile your object files using LabWindows/CVI headers to obtain
ANSI-compliant behavior.

The following lists show the complete contents of the supplemental C library libcfix.a .

Replacement Functions

Additional Functions Not Found in Sun Solaris 1 libc
_assert (used by assert() macro in assert.h)
labs

srand

fsetpos

fgetpos

atexit

difftime

div

ldiv

fpos

memmove

raise

rand

strerror

strtoul

Name Header Non-ANSI Behavior of Sun Version

_cvi_fflush stdio.h Does not handle NULL argument properly.

_cvi_fopen stdio.h Does not support binary open mode ("b").
Append open mode ("a") incorrect.

_cvi_freopen stdio.h Same as fopen.

_cvi_realloc stdlib.h Does not handle NULL argument properly.

_cvi_strtol stdlib.h Does not set errno to ERANGE on error.

_cvi_system stdlib.h Does not handle NULL argument properly.

matherr Default behavior prints error message.
© National Instruments Corporation 5-9 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

ertain
 and
is C

hese

he

I

00ProRef.book : 06chap05.fm Page 10 Monday, March 9, 1998 3:23 PM
Incompatibilities among LabWindows/CVI,
Sun Solaris, and ANSI C

Under the ANSI C standard, the programmer who implements the library chooses how c
functions behave. As a result, two implementations of a function can behave differently
still conform to the ANSI standard. Because LabWindows/CVI now uses the Sun Solar
library, incompatibilities arise from the following sources:

• Differences between LabWindows/CVI and the ANSI standard

• Differences between LabWindows/CVI and the Sun Solaris standard

This section outlines these incompatibilities.

Note None of these incompatibilities interfere with development of projects and
standalone executables in LabWindows/CVI for Sun.

Between LabWindows/CVI and ANSI C
The following incompatibilities exist between LabWindows/CVI and ANSI C:

• LabWindows/CVI for Solaris 1 defines size_t as a signed integer instead of an
unsigned integer as the ANSI C standard requires. National Instruments uses the
signed integer definition to make LabWindows/CVI compatible with the Sun Solaris
header files.

• LabWindows/CVI for Solaris 1 uses the Sun Solaris version of the ANSI function
strftime , which incorrectly interprets the "%W" control string as the one-based week
number instead of the zero-based week number as ANSI specifies.

• In LabWindows/CVI for Solaris 1, ungetc works improperly in certain cases:

-fsetpos fails to erase all memory of pushback characters by ungetc .

-ungetc does not clear the end-of-file indicator on success.

-ungetc fails in certain cases after reading to the end of a file.

• In LabWindows/CVI for Solaris 1, signal handlers you install with the signal function
remain installed after invocation of the handler. The ANSI standard specifies that t
handlers be removed before they are invoked.

• In standalone executables LabWindows/CVI creates for Solaris 1, the function abort
and the macro assert do not terminate the program if you install a signal handler for t
SIGABRT signal and the handler returns rather than calling longjmp . The ANSI standard
specifies that the program terminate in these cases.

• Under some versions of Sun Solaris 2 (for example, Solaris 2.5), the ANSI function
setlocale does not work properly when running programs in the LabWindows/CV
development environment. LabWindows/CVI links programs in the development
environment to the Sun Solaris static library libc.a , which contains a limited version
LabWindows/CVI Programmer Reference Manual 5-10 © National Instruments Corporation

Chapter 5 UNIX Compiler/Linker Issues

red

that

ese

 use
a

00ProRef.book : 06chap05.fm Page 11 Monday, March 9, 1998 3:23 PM
of setlocale . In contrast, LabWindows/CVI links standalone executables to the sha
library libc.so , which contains the fully functional version of setlocale .

Between LabWindows/CVI and Sun Solaris
The following incompatibilities exist between LabWindows/CVI and Sun Solaris:

• LabWindows/CVI does not support the long long data type some header files on
Solaris 2 use. In LabWindows/CVI, you cannot use that data type or call functions
use that data type.

• LabWindows/CVI implements the data type long double as an 8-byte object, in the
same way that it implements double . Sun Solaris implements long double as a
16-byte object. As a result, Sun Solaris functions that use long double do not work
properly in LabWindows/CVI.

• The LabWindows/CVI implementation of the printf and scanf family of functions
does not support the Sun Solaris implementation of long double .

• LabWindows/CVI does not support wide character constants (wchar_t) of the form
L'ab' .

• The data types jmp_buf and sigjmp_buf that the header file setjmp.h defines are
different for LabWindows/CVI and Sun Solaris. The LabWindows/CVI versions of th
buffers are larger than the Sun Solaris versions because LabWindows/CVI stores
additional debugging information in them. As a result, you must be careful when you
jmp_buf and sigjmp_buf objects among multiple files. In particular, if you compile
file in LabWindows/CVI with debugging enabled and the file uses setjmp or longjmp ,
then your program must include the LabWindows/CVI version of setjmp.h to handle
those functions correctly. The same is true for sigjmp_buf , sigsetjmp , and
siglongjmp .
© National Instruments Corporation 5-11 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 6-1 LabWindows/CVI Programmer

00ProRef.book : 06chap06.fm Page 1 Monday, March 9, 1998 3:23 PM
6

tion:

ser

al
Building Multiplatform
Applications

This chapter contains guidelines and caveats for writing platform-independent
LabWindows/CVI applications. LabWindows/CVI currently runs under Windows 3.1
and Windows 95/NT for the PC, and Solaris 1 and Solaris 2 for the SPARCstation.

One major feature of LabWindows/CVI is that it supports multiplatform programming.
Following a few simple guidelines assures the portability of a LabWindows/CVI applica

• Write code in strict ANSI C.

• Observe and repair all LabWindows/CVI compile, link, and run-time diagnostics.

• Avoid using system dependent calls when possible.

• Avoid using non-portable image formats and fonts in your user interface.

Multiplatform Programming Guidelines
LabWindows/CVI is portable because it uses ANSI C program files, LabWindows/CVI U
Interface Resource files, and National Instruments libraries.

You must segregate any platform dependent code in your source code using condition
preprocessor directives. You can use the built-in macros, such as _NI_mswin32_ ,
_NI_mswin16_ , _NI_mswin_ , _NI_unix_ and _NI_sparc_ . More information on the
macros that LabWindows/CVI automatically defines is available in the Compiler Defines
section of Chapter 1, LabWindows/CVI Compiler.

Library Issues
Avoid using Windows 32-bit SDK functions unless you intend your LabWindows/CVI
application to run only under Windows 95/NT.

The sopen and fdopen functions are available only under Windows. Avoid using them
unless you intend your LabWindows/CVI application to run only under Windows.

Avoid using UNIX host system library calls such as ioctl , fcntl , and so on, unless you
intend the LabWindows/CVI application to run only under UNIX. Refer to the Using the
Reference Manual

Chapter 6 Building Multiplatform Applications

e

,
 not
ion
to

ible

yte

o not

 Intel

se

00ProRef.book : 06chap06.fm Page 2 Monday, March 9, 1998 3:23 PM
Low-Level I/O Functions section in Chapter 1, LabWindows/CVI Compiler, of this manual,
for more information on how to use system library calls.

Under UNIX, the low-level I/O functions open , close , read , write , lseek , and eof are
available in the UNIX C library. Refer to the Using the Low-Level I/O Functions section
Chapter 1, LabWindows/CVI Compiler, of this manual, for more information on how to us
UNIX C low-level functions. These functions are portable to Windows if you include
lowlvlio.h in your Windows application.

In general, the ANSI C, User Interface, Analysis, Formatting and I/O, Utility, GPIB, VXI
RS-232, and TCP libraries are portable across platforms. However, a few functions are
multi-platform. The majority of these functions are in the Utility Library. The documentat
and function panels for the non-portable functions contain notes that list the platforms
which they apply.

Only LabWindows/CVI for Windows has DDE, Data Acquisition, and Easy I/O for DAQ
libraries. The X Property Library is available only under UNIX. The ActiveX Automation
Library is available only under Windows 95/NT.

Although LabWindows/CVI provides the TCP Library on all platforms, you are respons
for ensuring that the system has hardware and software support for the TCP server.

Various processor architectures store integers and floating point numbers in different b
order. To circumvent these inconsistencies, use the [o] modifier in the Formatting and I/O
Library to describe the byte ordering of device data. In a Fmt/Scan function, use the [o]
modifier to describe the byte ordering for the buffer that contains the raw device data. D
use the [o] modifier on the buffer that holds the data in the byte ordering of the host
processor. For example, if you use a GPIB instrument that sends two-byte binary data in
byte order, use the following code:

short instr_buf[100];

short prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Scan (instr_buf, "%100d[b2o01]>%100d[b2]", prog_buf);

If you use a GPIB instrument that sends two-byte binary data in Motorola byte order, u
Scan as shown in the following example:

Scan (instr_buf, "%100d[b2o10]>%100d[b2]", prog_buf);

In either case, use the [o] modifier only on the buffer that contains the raw data from the
instrument (instr_buf). LabWindows/CVI ensures that the program buffer (prog_buf)
uses the proper byte order for the host processor. For a full description of the [o] modifier,
refer to Chapter 2, Formatting and I/O Library, of the LabWindows/CVI Standard Libraries
Reference Manual.
LabWindows/CVI Programmer Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Building Multiplatform Applications

l
dules
n the

 and
 1.

es

 code

e

face

a

een
lying

ause

00ProRef.book : 06chap06.fm Page 3 Monday, March 9, 1998 3:23 PM
Externally Compiled Modules
Although you can use externally compiled modules in LabWindows/CVI as this manua
describes, the best medium for application portability is ANSI C source code. Object mo
are not directly portable from one platform to another because the object file formats o
various platforms differ.

For example, the object file formats are different among Windows 3.1, Windows 95/NT,
UNIX systems. Although SPARCstations have the same computer architecture, Solarisx
(Sun OS 4.x) and Solaris 2.x also use different object file formats that make object modul
non-portable even between these two systems.

To use an externally compiled module across platforms, you must recompile the source
for the module with a compiler for the target system.

Multiplatform User Interface Guidelines
Function panel (.fp) files are portable across platforms.

User Interface Resource (.uir) files are portable across platforms.

Image file formats other than PCX (.pcx) are not portable.

Color hue and intensity differences between platforms are unavoidable.

The only fonts sure to be available on all platforms are the National Instruments fonts.
National Instruments fonts of the same name resemble each other stylistically from on
platform to another, although some relative size differences might exist. The National
Instruments Meta Fonts are of uniform size (height) relative to the rest of the user inter
and are the most portable family of fonts available. However, the width of the National
Instruments Meta Fonts might differ slightly from one platform to another. Allow for extr
space in the width of all control labels to assure consistent appearance.

You might find the User Interface library functions GetCtrlBoundingRect ,
GetTextDisplaySize , and GetScreenSize useful in calculating and compensating for
font-size discrepancies between platforms.

The order in which LabWindows/CVI processes user interface events might differ betw
Windows and UNIX platforms. This happens because of differences between the under
window management systems that LabWindows/CVI uses.

You must not assign the forward <Delete> key as a hot-key in your user interface, bec
that key does not exist on all platforms.
© National Instruments Corporation 6-3 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 7-1 LabWindows/CVI Programmer

00ProRef.book : 06chap07.fm Page 1 Monday, March 9, 1998 3:23 PM
7

ment.

 use
r on
e

gine.

e

r DLL
Creating and
Distributing Standalone
Executables and DLLs

This chapter describes how the LabWindows/CVI Run-time Engine, DLLs, externally
compiled modules, and other files interact with your executable file. This chapter also
describes how to perform error checking in a standalone executable program. You can
create executable programs from any project that runs in the LabWindows/CVI environ

Introduction to the Run-Time Engine
With your purchase of LabWindows/CVI, you received the Run-time Engine as part of your
distribution. The LabWindows/CVI Run-time Engine is necessary to run executables or
DLLs you create with LabWindows/CVI, and it must be present on any target compute
which you want to run your executable program. You can distribute the Run-time Engin
according to your license agreement.

Distributing Standalone Executables under Windows
Under Windows, you can bundle the LabWindows/CVI Run-time Engine with your
distribution kit using the Create Distribution Kit command in the Build menu of the
Project window, or you can distribute it separately by making copies of the Run-time En

Minimum System Requirements for Windows 95/NT
To use a standalone executable or DLL that depends on the LabWindows/CVI Run-tim
Engine, you must have the following:

• Windows 95, or Windows NT version 4.0 or later

• A personal computer with at least a 33 MHz 486 or higher microprocessor

• A VGA resolution or higher video adapter

• A minimum of 8 MB of memory

• Free hard disk space equal to 4 MB, plus space to accommodate your executable o
and any files the executable or DLL requires
Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ust

al

nd any

our

ams

00ProRef.book : 06chap07.fm Page 2 Monday, March 9, 1998 3:23 PM
No Math Coprocessor Required for Windows 95/NT
You do not have to have a math coprocessor or emulator to use the LabWindows/CVI
Run-time Engine under Windows 95/NT.

Minimum System Requirements for Windows 3.1
To run a standalone executable you create using LabWindows/CVI for Windows, you m
have the following:

• MS-DOS, version 3.1 or later

• Microsoft Windows operating system, version 3.1 or later

• A personal computer with at least a 25 MHz 386 or higher microprocessor. Nation
Instruments recommends a 33 MHz 486 or higher microprocessor.

• A VGA resolution or higher video adapter

• A math coprocessor

• A minimum of 4 MB of memory

• Free hard disk space equal to 2 MB, plus space to accommodate your executable a
files the executable requires

Math Coprocessor Software Emulation for Windows 3.1
To run a standalone executable you create using LabWindows/CVI for Windows 3.1, y
system must have a math coprocessor. LabWindows/CVI recognizes the following
coprocessor emulation programs.

• wemu387.386 from Watcom

• Q387 from Quickware

Distributing Standalone Executables under UNIX
The Create Distribution Kit command is not available with UNIX versions of
LabWindows/CVI. However, you can use one of several UNIX shell scripts in the misc/bin
directory of the LabWindows/CVI installation directory to package your standalone progr
for distribution.
LabWindows/CVI Programmer Reference Manual 7-2 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

e
s

re the
ning

ecute

tion

g

ia.

 can

00ProRef.book : 06chap07.fm Page 3 Monday, March 9, 1998 3:23 PM
Distributing Standalone Executables under Solaris 2
To use the System V software packaging utility pkgmk to distribute executable programs
under Solaris 2, complete the following steps.

1. If your program loads .uir files with LoadPanel or loads external modules with
LoadExternalModule , use caution when you specify the filenames in calls to thes
functions. If you use a relative path, the path is relative to the directory that contain
the executable. Refer to the Location of Files on the Target Machine for Running
Executables and DLLs section later in this chapter for more information.

2. Create a directory to contain your executable program and associated files. Structu
directory exactly as you want it to appear after installation. Test your program by run
it from that directory.

3. From the directory that contains your executable program and associated files, ex
the makepkg shell script in the misc/bin directory of the LabWindows/CVI installation
directory to create a distribution package. The script requires the following informa
to build the package:

• Abbreviated package name that can have up to nine characters in the form
XYZmyapp

• Text name for the package

• Default installation base directory on the user’s machine

• Directory to place the build package

The script requests the following information, which is optional:

• Company or vendor name for the package

• Name and path to a copyright notice file for the package

• Relative path and executable name to create as a symbolic link

4. The makepkg script creates the following files and directory structure. In the followin
paths, pkgname stands for the name of your application package.

pkgname/install/copyright

pkgname/install/postinstall

pkgname/install/preremove

pkgname/pkginfo

pkgname/pkgmap

pkgname/reloc/ pkgname/ contents of application directory

You can now place the pkgname directory and its contents onto your distribution med

5. To run your executable, you must have the LabWindows/CVI Run-time Engine. You
build the package for the LabWindows/CVI Run-time Engine by executing makecvirte

located in the misc/bin directory of the LabWindows/CVI installation directory. The
© National Instruments Corporation 7-3 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ted

s the

re the
un it

reated

 then
m

 FTP,

00ProRef.book : 06chap07.fm Page 4 Monday, March 9, 1998 3:23 PM
makecvirte script prompts you to name the directory in which to place the comple
package. The package name is NICcvirte .

6. To install or remove a package on a machine you must log in as root . You can then use
either of the following two methods to install or remove a package:

• Use the Software Management Tool swntool located in the /usr/sbin directory
of your system.

• Use the following command to install a package:

pkgadd -d <path to package> pkgname

To remove a previously installed package, issue the following command:

pkgrm pkgname

Distributing Standalone Executables under Solaris 1
To distribute executable programs under Solaris 1, complete the following steps.

1. If your program loads UIR files with LoadPanel or loads external modules with
LoadExternalModule , use caution when you specify filenames in calls to these
functions. If you use a relative path, the path is relative to the directory that contain
executable. Refer to the Location of Files on the Target Machine for Running
Executables and DLLs section in this chapter for more information.

2. Create a directory containing your executable program and associated files. Structu
directory exactly as you want it to appear after installation. To test your program, r
from that directory.

3. Use the shell script makedist in the misc/bin directory to create a distribution
package. This script creates a compressed tar file that contains the directory you c
in Step 2 and a copy of the LabWindows/CVI Run-time Engine.

4. Make a copy of the installation script INSTALL.sample in the misc/bin directory and
customize it using the information makedist provides. This installation script unpacks
a distribution package, creating a directory like the one you created in Step 2, and
installs the LabWindows/CVI Run-time Engine. The installation script can install fro
floppy disks or from the current directory.

5. If you want to distribute your program on floppy disks, use the shell script makefloppy
in the misc/bin directory to copy your installation script and distribution package to
floppy disks. If you want to distribute using some other method, such as anonymous
you must provide users with the package file that makedist creates and the customized
installation script that extracts the files from the package.

You can use this method under Solaris 2 if you do not want to use the pkgmk utility.
LabWindows/CVI Programmer Reference Manual 7-4 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

em

nd any

,
des in
sage

n

el free

of

stall

u can
tains
with

00ProRef.book : 06chap07.fm Page 5 Monday, March 9, 1998 3:23 PM
Minimum System Requirements for UNIX
To run a standalone executable you create using LabWindows/CVI for UNIX, your syst
must have the following:

• Sun SPARCstation

• Solaris 1.x (SunOS 4.1.2 or higher) or Solaris 2.4 or higher

• At least 24 MB of RAM

• At least 32 MB of disk swap space

• Free hard disk space equal to 4 MB, plus space to accommodate your executable a
files the executable requires

Translating the Message File
The message file, called msgrt n.txt where n is the version number of the Run-time Engine
is a text file that contains the error messages that the Run-time Engine displays. It resi
the bin directory of the Run-time Engine installation directory. You can translate the mes
file into other languages. To translate the message file, perform the following steps.

1. Copy the file to another name so you have it as a backup.

2. Use a text editor to modify msgrt n.txt . Translate only the text that is inside quotatio
marks. You must not add or delete any message numbers.

3. Execute the countmsg.exe or countmsg utility on the file to encode it for use with the
Run-time Engine, as in the following example:

countmsg msgrt5.txt

Configuring the Run-Time Engine

This section applies to you, the developer, and the user of your executable program. Fe
to use the text in this section in the documentation for your executable program.

Solaris 1 Patches Required for Running Standalone Executable

Executables you create using LabWindows/CVI do not run properly on some versions
Solaris 1 (SunOS 4) unless you patch the dynamic linker (/usr/lib/ld.so). For this
reason, you might have to patch the operating system on the machine on which you in
your standalone executable.

The required patches are available from Sun and also come with LabWindows/CVI. Yo
either install the patch automatically using the installation script in the directory that con
the patch, or you may install the patch manually by following the instructions that come
© National Instruments Corporation 7-5 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ms,

ent
me

ar

er

ust be
d the

00ProRef.book : 06chap07.fm Page 6 Monday, March 9, 1998 3:23 PM
the patch. The required patches are available in the misc/patch subdirectory of the
LabWindows/CVI installation directory. The following patches are available:

• Patch-ID #100257-06 for SunOS 4.1.3/4.1.3c

• Patch-ID #101743-02 for SunOS 4.1.3_U1

• Patch-ID #101783-02 for SunOS 4.1.1/4.1.2

Configuration Option Descriptions
The Run-time Engine recognizes various configuration options. Under Windows platfor
the installation program for the Run-time Engine automatically sets the required
configuration options for you.

Refer to the How to Set the Configuration Options discussion in Chapter 1, Configuring
LabWindows/CVI, of the LabWindows/CVI User Manual for detailed instructions on how to
manually set configuration options on each platform for the LabWindows/CVI developm
environment. Under UNIX, you set the Run-time Engine configuration options in the sa
manner. Under Windows, you set the Run-time Engine configuration options in a simil
manner, but with the following differences:

• Under Windows 95/NT, set the configuration options in the Registry under the
following key:

HKEY_LOCAL_MACHINE\Software\National Instruments

\CVI Run-Time Engine\cvirte

• Under Windows 3.1, set the configuration options in the [cvirt n] section of the
win.ini file, where n is the version of the Run-time Engine.

Note Under UNIX, changes to options do not take effect until you restart your X serv
or issue the xrdb .Xdefaults command.

cvirtx (Windows 3.1 Only)
Because executables load and execute the Run-time Engine under Windows 3.1, they m
able to locate the Run-time Engine on the hard disk. Under Windows 3.1, executables fin
Run-time Engine using cvirt n, where n is the version number of the Run-time Engine,
configuration option.

Assign the pathname of the Run-time Engine executable file to the cvirt n option in the
[cvirt n] section of win.ini , as in the following example:

[cvirt5]

cvrt5=c:\windows\system\cvirt5\cvirt5.exe
LabWindows/CVI Programmer Reference Manual 7-6 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ssary

ces

ct

00ProRef.book : 06chap07.fm Page 7 Monday, March 9, 1998 3:23 PM
cvidir (Windows Only)
Under Windows 95/NT, cvidir specifies the location of the directory that contains the bin
and fonts subdirectories that the Run-time Engine requires. This Registry entry is nece
to enable the Windows 95/NT Run-time Engine DLL to load. When you install the
LabWindows/CVI Run-time Engine under Windows 95/NT, the installation program pla
the bin and fonts subdirectories in the cvirte directory under the Windows system
directory. The installation program also creates the cvidir entry in the Registry.

For Windows 3.1, set the cvidir option only if the Run-time Engine resides in a directory
other than the directory that contains the bin and fonts subdirectories. Set it to the directory
that contains the bin and fonts subdirectories.

useDefaultTimer (Windows Only)

The LabWindows/CVI Run-time Engine recognizes the UseDefaultTimer option under
Windows platforms. It has the same effect as in the LabWindows/CVI development
environment. Refer to Chapter 1, Configuring LabWindows/CVI, in the LabWindows/CVI
User Manual, for more information on useDefaultTimer .

DSTRules

The LabWindows/CVI Run-time Engine recognizes the DSTRules option. It has the same
effect as in the LabWindows/CVI development environment. Refer to Chapter 1, Configuring
LabWindows/CVI, in the LabWindows/CVI User Manual, for more information
on DSTRules .

UNIX Options

The LabWindows/CVI Run-time Engine recognizes the activate , appFont , dialogFont ,
editorFont , menuFont , messageBoxFont , useDefaultColors , useMetaKey , and
warpMouseOverDialogBoxes options under UNIX platforms. They have the same effe
as in the LabWindows/CVI development environment. Refer to Chapter 1, Configuring
LabWindows/CVI, in the LabWindows/CVI User Manual, for more information on these
options.
© National Instruments Corporation 7-7 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

table
les to

ur

-click
nder

d
he
er
ent
-time

00ProRef.book : 06chap07.fm Page 8 Monday, March 9, 1998 3:23 PM
Necessary Files for Running Executable Programs
In order for your executable to run successfully on a target computer, all files the execu
requires must be accessible. Your final distribution kit must contain all the necessary fi
install your LabWindows/CVI executable program on a target machine as shown in
Figure 7-1.

Figure 7-1. Files Necessary to Run a LabWindows/CVI Executable Program on a Target Machine

• Executable—This file contains a precompiled, prelinked version of your
LabWindows/CVI project and any instrument driver program files that you link to yo
project. It also contains the application name and icon resource to register to the
operating system. The executable has an associated icon on which you can double
to start the application. When the executable starts, it loads the Run-time Engine. U
UNIX, the executable returns the value that main returned or the value you passed
to exit .

• Run-time Engine—The Run-time Engine contains all the built-in library, memory, an
program execution code present in the LabWindows/CVI environment, without all t
program development tools such as the source editor, compiler, debugger, and us
interface editor. The Run-time Engine is smaller than the LabWindows/CVI environm
and thus loads faster and requires less memory. You use only one copy of the Run
Engine on each target machine even when you have multiple executables. Under

UIR,
image,
& state

files

DLLs
&

PTHs

external
.lib's or

.a's

external
.obj's or

.o's

other
files

Executable LW/CVI Run-Time Engine

startup code

compiled
source code

instrument
driver code

.obj's or .o's

.lib's or .a's

application
name & icon

resource

program
execution
support

memory
management

built-in
CVI Libraries
LabWindows/CVI Programmer Reference Manual 7-8 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

s

se

 on

.

.

e
 the

gram
in a

o
of

00ProRef.book : 06chap07.fm Page 9 Monday, March 9, 1998 3:23 PM
Windows 95/NT, the Run-time Engine consists of multiple files, including three DLL
and the low-level support driver. Under Windows 3.1, the Run-time Engine is an
execute-only version of the LabWindows/CVI environment. Under Sun Solaris, the
Run-time Engine is a shared library

• UIR files—The User Interface Resource files that your application program uses. U
LoadPanel and LoadMenuBar to load these files.

• Image files—The graphical image files that you programmatically load and display
your user interface using DisplayImageFile .

• State files—The user interface panel state files that you save using SavePanelState
and load using RecallPanelState .

• DLL files —(Windows Only) the Windows Dynamic Link Library files that your
application program uses.

• PTH files—(Windows 3.1 Only) specify the location of DLL files when you want to
load the DLL from a special directory, or indicate that you want to find a DLL using
the standard Windows DLL search algorithm.

• External .lib or .a files—Compiled 32-bit .lib files on the PC or .a files under UNIX
that you load using LoadExternalModule and that you have not listed in the project

• External .obj or .o files—Compiled 32-bit .obj files on the PC or .o files under UNIX
that you load using LoadExternalModule and that you have not listed in the project

• Other files—Files your executable opens using open , fopen , OpenFile , and so on.

Necessary Files for Using DLLs Created
in Windows 95/NT

Under Windows 95/NT, you can distribute DLLs that use the LabWindows/CVI Run-tim
Engine. As in the case of standalone executables, you must distribute them along with
LabWindows/CVI Run-time Engine.

Location of Files on the Target Machine for Running
Executables and DLLs

To assure proper execution, it is critical that all files associated with your executable pro
are in the proper directories on the target machine. On the PC, you specify these files
relative directory structure in the dialog box that appears when you select Create
Distribution Kit from the Build menu of the Project window in LabWindows/CVI. Refer t
the LabWindows/CVI User Manual for details. This section describes the proper location
each of the files shown in Figure 7-1.
© National Instruments Corporation 7-9 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

e

o,
n.

our

00ProRef.book : 06chap07.fm Page 10 Monday, March 9, 1998 3:23 PM
LabWindows/CVI Run-Time Engine under Windows 95/NT
Table 7-1 shows the files that comprise the LabWindows/CVI Run-time Engine for
Windows 95/NT.

These files come on a separate diskette, or in a separate directory in the CD-ROM. Th
LabWindows/CVI installation program installs the files along with the development
environment. The Create Distribution Kit command in the Build menu of the Project
window can bundle the Run-time Engine DLLs and drivers into your distribution kit. Als
you can make copies of this diskette, or the CD-ROM directory, for separate distributio

Run-Time Library DLLs
The installation program always places the Run-time Engine DLLs in the Windows system
directory under Windows 95 and the Windows system32 directory under Windows NT.

Low-Level Support Driver
The Run-time Engine loads the low-level support driver if it is present when you start y
standalone executable. Several functions in the Utility Library require the low-level
support driver. Refer to the function reference for CVILowLevelSupportDriverLoaded in
Chapter 8, Utility Library, of the LabWindows/CVI Standard Libraries Reference Manual for
more information on these functions.

The installation program installs the low-level support driver in the Windows system
directory under Windows 95 and the Windows system32\drivers directory under

Table 7-1. LabWindows/CVI Run-Time Engine Files

Run-Time Engine File Description

cvirt.dll Helper DLL

cvirte.dll Contains most LabWindows/CVI libraries

cviauto.dll Contains ActiveX Automation Library

cvi95vxd.vxd Low-level support driver for Windows 95

cvintdrv.sys Low-level support driver for Windows NT

msgrt n.txt Contains text messages; n is Run-time Engine version number

cvirt n.rsc Contains binary resources; n is Run-time Engine version
number

ni7seg.ttf Font description file

nisystem.ttf Font description file
LabWindows/CVI Programmer Reference Manual 7-10 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

nder

entry

 the

two

al
he

able

ent.

00ProRef.book : 06chap07.fm Page 11 Monday, March 9, 1998 3:23 PM
Windows NT. Under Windows NT, the installation program also adds a registry entry u
the following key:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\cvintdrv

Table 7-2 shows the values the installation program sets for the Windows NT registry
for the low-level support driver.

Message, Resource, and Font Files
The installation program installs ni7seg.ttf and nisystem.ttf in the cvirte\fonts
subdirectory under the directory in which it installs the Run-time Engine DLLs. It installs
msgrtn.txt and cvirt n.rsc in the cvirte\bin subdirectory under the directory in
which it installs the Run-time Engine DLLs. It sets the cvidir option in the following
registry key to the pathname of the cvirte directory.

HKEY_LOCAL_MACHINE\Software\National Instruments

\CVI Run-Time Engine\cvirte

You can subsequently change the location of the bin and fonts subdirectories, but you must
also change the cvidir registry option to the pathname of the directory that contains the
subdirectories.

National Instruments Hardware I/O Libraries
The LabWindows/CVI Run-time Engine does not include the DLLs or drivers for Nation
Instruments hardware. Users can install the DLLs and drivers for their hardware from t
distribution disks that National Instruments supplies.

LabWindows/CVI Run-Time Engine under Windows 3.1
For Windows 3.1, the LabWindows/CVI Run-time Engine comes in the form of an execut
file. The name of the executable file is cvirt n.exe , where n is the version of the Run-time
Engine. The Run-time Engine comes on a separate diskette. The LabWindows/CVI
installation program installs the Run-time Engine along with the development environm
The Create Distribution Kit command in the Build menu of the Project window can bundle

Table 7-2. Windows NT Registry Entry Values for the Low-Level Support Driver

Type Name Value

DWORD ErrorControl 00000001

String Group "Extended Base"

DWORD Start 00000002

DWORD Type 00000001
© National Instruments Corporation 7-11 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

 for
gine.

al

ation

 for
eir

utable
names

the

00ProRef.book : 06chap07.fm Page 12 Monday, March 9, 1998 3:23 PM
the Run-time Engine into your distribution kit. Also, you can make copies of this diskette
separate distribution. The user selects the directory into which to install the Run-time En

The LabWindows/CVI Run-time Engine does not include the DLLs or drivers for Nation
Instruments hardware. Users can install the DLLs or drivers for their hardware from the
distribution disks that National Instruments supplies.

LabWindows/CVI Run-Time Engine under Sun Solaris
Under Sun Solaris, the Run-time Engine comes in the form of a shared library called
libcvi.so. n, where n is the version number of the Run-time Engine. The installation
program installs the shared library in the lib subdirectory under the Run-time Engine
installation directory. It also creates two symbolic links, where cvirte stands for the
Run-time Engine installation directory, as shown in Table 7-3.

The installation program installs message and resource files in the bin directory under the
Run-time Engine installation directory. It installs font description files in the fonts directory
under the Run-time Engine installation directory. You can subsequently change the loc
of the bin and fonts subdirectories, but you must also change the cvidir configuration
option to the pathname of the directory that contains the two subdirectories.

The LabWindows/CVI Run-time Engine does not include the shared libraries or drivers
National Instruments hardware. Users can install the shared libraries and drivers for th
hardware from the distribution disks that National Instruments supplies.

Rules for Accessing UIR, Image, and Panel State Files on All Platforms
The recommended method for accessing UIR, image, and panel state files in your exec
program is to place the files in the same directory as the executable and pass simple file
with no drive letters or directory names to LoadPanel , DisplayImageFile ,
SavePanelState , and RecallPanelState .

If you do not want to store these files in the same directory as your executable,
you must pass pathnames to LoadPanel , DisplayImageFile , SavePanelState , and
RecallPanelState . These functions interpret relative pathnames as being relative to
directory that contains the executable.

Table 7-3. Pathnames and Targets of Links

Pathname of Link Target of Link

/usr/lib/libcvi.so /usr/lib/libcvi.so. n

/usr/lib/libcvi.so. n cvirte /lib/libcvi.so. n
LabWindows/CVI Programmer Reference Manual 7-12 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ser
n

idiary
hen
 the

it

r

ust

e

00ProRef.book : 06chap07.fm Page 13 Monday, March 9, 1998 3:23 PM
Rules for Using DLL Files under Windows 95/NT
Under Windows 95/NT, your executable or DLL can link to a DLL only through an
import library. This section refers to a DLL an executable or another DLL uses as asubsidiary
DLL. You can link an import library into your program in any of the following ways:

• List it in your project.

• Associate it with the .fp file for an instrument driver or user library.

• Dynamically load it by a calling LoadExternalModule .

If you list a DLL import library in the project or associate it with an instrument driver or u
library, LabWindows/CVI statically links the import library into your executable or DLL. O
the other hand, if you load the import library through a call to LoadExternalModule , you
must distribute it separately from your executable. Refer to the Rules for Loading Files Using
LoadExternalModule section later in this chapter for more information.

Regardless of the method you use to link the import library, you must distribute the subs
DLL separately. The import library always contains the name of the subsidiary DLL. W
your executable or DLL is loaded, the operating system finds the subsidiary DLL using
standard DLL search algorithm, which the Windows SDK documentation for the
LoadLibrary function describes. The search precedence is as follows:

1. The directory from which the user loads the application

2. The current working directory

3. Under Windows 95, the Windows system directory. Under Windows NT, the Windows
system32 and system directories

4. The Windows directory

5. The directories listed in the PATH environment variable

The Create Distribution Kit command automatically includes in your distribution kit the
DLLs that the import libraries in your project refer to. You must add to the distribution k
any DLLs that you load through LoadExternalModule or that you load by calling the
Windows SDK LoadLibrary function.

Do not include DLLs for National Instruments hardware in your distribution kit. The use
must install these DLLs from the distribution disks that National Instruments supplies.

Rules for Using DLL Files under Windows 3.1
LabWindows/CVI never links DLL files and DLL path files into the executable, so you m
distribute them as separate files. The Create Distribution Kit command automatically
includes DLLs that your project refers to in your distribution kit. The only exceptions ar
DLLs for National Instruments hardware and DLLs that you load using
LoadExternalModule .
© National Instruments Corporation 7-13 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

r

 an

table
ing

00ProRef.book : 06chap07.fm Page 14 Monday, March 9, 1998 3:23 PM
Do not include DLLs for National Instruments hardware in your distribution kit. The use
must install these DLLs from the distribution disks that National Instruments supplies.

If you use LoadExternalModule to load DLLs, refer to the following section, Rules for
Loading Files Using LoadExternalModule.

If you use a DLL file, a DLL path file, or a DLL glue object module in your project or as
instrument driver, the Run-time Engine always looks for a corresponding DLL path (.pth)
file before it looks for the DLL itself. This search mechanism lets the user of your execu
place the DLLs anywhere on the target computer. The Run-time Engine uses the follow
DLL search method.

1. Look for a .pth file in the directory of the executable. The .pth file must have the same
base name as the file in the project or as the instrument driver. If the .pth file contains
an absolute path to the DLL, use that path to find the DLL. If the .pth file contains a
simple filename, use the standard Windows DLL search algorithm: directory of
executables, current working directory, \windows , \windows\system , then the PATH
environment variable.

2. Look for a .dll file in the directory of the executable. The .dll file must have the same
base name as the file in the project or as the instrument driver.

3. Otherwise, use the standard Windows DLL search algorithm.

Note Before searching for a .dll file, the Run-time Engine always looks for a
.pth file. Therefore, your choice of whether to use a .pth file when you develop
your application in the LabWindows/CVI environment does not restrict your
choice of whether to use a .pth file in the standalone application.

Rules for Loading Files Using LoadExternalModule
LoadExternalModule can load the following file types:

Library Files: .lib (Windows) or .a (UNIX)

Object Modules: .obj (Windows) or .o (UNIX)

DLL Import Library Files: .lib (Windows 95/NT only)

DLL Path Files: .pth (Windows 3.1 only)

DLL Files: .dll (Windows 3.1 only)

Source Files: .c (linked into your executable or DLL)
LabWindows/CVI Programmer Reference Manual 7-14 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

s in
n
ludes
efers

L.

LL.

he

le
m

e
he

 and

 or
.

00ProRef.book : 06chap07.fm Page 15 Monday, March 9, 1998 3:23 PM
Forcing Modules that External Modules Refer to
into Your Executable or DLL
In the LabWindows/CVI development environment, external modules can link to module
the Instrument and Library menus regardless of whether you refer to them elsewhere i
your project. However, when you create a standalone executable, LabWindows/CVI inc
in the executable only modules that your project refers to directly. If an external module r
to modules not included in the executable, calls to RunExternalModule or
GetExternalModuleAddr on that external module fail.

To avoid this problem, you must force any missing modules into your executable or DL
You can do this when you create your executable or DLL by using the Add Files To
Executable or Add Files To DLL button to display a list of project .lib , project .a ,
Instrument, and Library files. Select the files you want to include in your executable or D
If you select a .lib or .a file, it is linked in its entirety.

Alternatively, you can link modules into your executable or DLL by including dummy
references to them in your program. For instance, if your external module references t
functions FuncX and FuncY , include the following statement in your program:

void *dummyRefs[] = {(void *)FuncX, (void *)FuncY};

Using LoadExternalModule on Files in the Project
You can call LoadExternalModule on files listed in the project. You must pass the simp
filename to LoadExternalModule . However, when you create an executable or DLL fro
your project, you might have additional work to do:

• If you link your executable or DLL in LabWindows/CVI, the following rules apply for
files listed in the project:

– For .c or .obj files, everything works automatically.

– For .dll or .pth files (Windows 3.1 only), refer to the Rules for Using DLL Files
under Windows 3.1 section earlier in this chapter.

– For .lib files, by default, Create Standalone Executable File or Create Dynamic
Link Library only links in the library modules that you reference statically in th
project. Therefore, you must force into the executable the modules that contain t
functions you call using GetExternalModuleAddr .

To force these modules into the executable, include the library file in the project
take one of the following actions:

• If you want to force the entire library file into the executable, use the Add Files
to Executable button in the Create Standalone Executable File dialog box,
the Add Files to DLL button in the Create Dynamic Link Library dialog box
© National Instruments Corporation 7-15 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

le,
rray
.

LL.

x in
ins

to

p

ently

m

te

e the
tory,

00ProRef.book : 06chap07.fm Page 16 Monday, March 9, 1998 3:23 PM
• If you want to force only specific modules from the library into the executab
reference them statically in your program. For example, you could have an a
of void pointers and initialize them to the names of the necessary symbols

• If you link in an external compiler under Windows 95/NT, the LabWindows/CVI Utility
library does not know the location of symbols in the externally linked executable or D
Consequently, without further action on your part, you cannot call
GetExternalModuleAddr or RunExternalModule on modules that you link directly
into your executable or DLL. Your alternatives are as follows.

1. Remove the file from the project and distribute it as a separate .obj , .lib ,
or .dll .

2. Use the Other Symbols section of the External Compiler Support dialog bo
the Build menu of the Project window to create an object module that conta
a table of symbols you want GetExternalModuleAddr to find. If you use this
method, pass the empty string ("") to LoadExternalModule as the module
pathname. The empty string indicates that you linked the module directly in
your executable or DLL using an external compiler.

Using LoadExternalModule on Library and Object Files
Not in the Project
If you call LoadExternalModule on a library or object file not in the project, you must kee
the library or object file separate in your distribution.

When you keep an object or library file separate, you can manage memory more effici
and replace it without having to replace the executable. For this reason, if you call
LoadExternalModule on a library or object in the project, remove or exclude the file fro
the project before you select Create Standalone Executable File or Create Dynamic Link
Library , and then include it as a separate file when you use Create Distribution Kit .

However, remember that you cannot statically reference functions defined in a separa
library or object file from the executable or DLL. You must use LoadExternalModule and
GetExternalModuleAddr to make such references.

When you distribute the library or object file as a separate file, it is a good idea to plac
file in the same directory as the executable or DLL. If you place the file in the same direc
you can pass a simple filename to LoadExternalModule . If you do not want the file to be
in the same directory as your executable, you must pass a pathname to
LoadExternalModule . LoadExternalModule interprets relative pathnames as being
relative to the directory that contains the executable or DLL.
LabWindows/CVI Programmer Reference Manual 7-16 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ou
d it

L
ithm.

hem

to

s,

00ProRef.book : 06chap07.fm Page 17 Monday, March 9, 1998 3:23 PM
Using LoadExternalModule on DLL Files under Windows 95/NT
Under Windows 95/NT, you cannot pass the pathname of a DLL directly into
LoadExternalModule . Instead, you must pass the pathname of a DLL import library. Y
can link the import library into your executable or DLL or distribute it separately and loa
dynamically. For import libraries that you link into your executable or DLL, refer to the Using
LoadExternalModule on Files in the Project section earlier in this chapter. For import
libraries that you load dynamically, refer to the Using LoadExternalModule on Library and
Object Files Not in the Project section earlier in this chapter.

You must always distribute DLLs as separate files. The operating system finds the DL
associated with the loaded import library using the standard Windows DLL search algor
The search precedence is as follows.

1. The directory from which the application loads

2. The current working directory

3. Under Windows 95, the Windows system directory. Under Windows NT, the Windows
system32 and system directories

4. The Windows directory

5. The directories the PATH environment variable lists

Using LoadExternalModule on DLL and Path Files
under Windows 3.1
DLL files and DLL path files are never linked into the executable, so you must distribute t
as separate files.

Your executable can call LoadExternalModule directly on a DLL or DLL path file only if
you include the DLL or DLL path file in the project. When you select Create Standalone
Executable File, LabWindows/CVI automatically creates the DLL glue code and links it in
the executable.

Also, you can pass the DLL glue object module filename to LoadExternalModule . You can
generate the DLL glue object module by opening the .h file for the DLL in a Source window
of LabWindows/CVI and selecting Generate DLL Glue Object from the Options menu.

If you include the DLL, the DLL path file, or the DLL glue object module as a file in the
project, you must pass LoadExternalModule a simple filename, and it uses the following
search method to find the DLL.

1. Look for a .pth file in the directory of the executable. The .pth file must have the same
base name as the file you passed to LoadExternalModule . If the .pth file contains an
absolute path to the DLL, use that path to find the DLL. If the .pth file contains a simple
filename, use the standard Windows DLL search algorithm: directory of executable
© National Instruments Corporation 7-17 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

must

hat

hat

n

ernal

00ProRef.book : 06chap07.fm Page 18 Monday, March 9, 1998 3:23 PM
current working directory, \windows , \windows\system , then the PATH environment
variable.

2. Look for a .dll file in the directory of the executable. The .dll file must have the same
base name as the file you passed to LoadExternalModule .

3. Otherwise, use the standard Windows DLL search algorithm.

If you maintain the DLL glue object module as a separate file from the executable, you
pass LoadExternalModule a pathname to the DLL glue object module, and it uses the
following search method to find the DLL.

1. Look for a .pth file that is in the same directory as the DLL glue object module and t
has the same base name as the DLL glue object module. If the .pth file contains an
absolute path to the DLL, use it to find the DLL. If the .pth file contains a simple
filename, use the standard Windows DLL search algorithm.

2. Look for a .dll file that is in the same directory as the DLL glue object module and t
has the same base name as the DLL glue object module.

3. Otherwise, use the standard Windows DLL search algorithm.

Note Before searching for a .dll file, a standalone executable always looks for a
.pth file. Therefore, your choice of whether to use a .pth file when you develop
your application in the LabWindows/CVI environment does not restrict your
choice of whether to use to .pth file in the standalone application.

Using LoadExternalModule on Source Files (.c)
If you pass the name of a source file to LoadExternalModule , the source file must be in the
project. LabWindows/CVI automatically compiles the source file and links it into the
executable when you select Create Standalone Executable File or Create Dynamic Link
Library . For this reason you must pass a simple filename to LoadExternalModule . If you
use an external compiler, refer to the, Using LoadExternalModule on Files in the Project,
section earlier in this chapter.

If the source file is an instrument driver program that is not in the project and you link i
LabWindows/CVI, you have two alternatives:

• Add the instrument driver .c source to the project.

• Refer to one of the variables or functions it exports in one of your project files.

If the source file is an instrument program that is not in the project and you link in an ext
compiler, you must create an object file and keep it separate from the executable.
LabWindows/CVI Programmer Reference Manual 7-18 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

ry.

ield
tory.
he
ing

op
cks
 to

re
rs
cking

00ProRef.book : 06chap07.fm Page 19 Monday, March 9, 1998 3:23 PM
Rules for Accessing Other Files
The functions for accessing files, such as fopen , OpenFile , SetFileAttrs , DeleteFile ,
and so on, interpret relative pathnames as being relative to the current working directo
Under Windows, the initial current working directory is normally the directory of the
executable. However, if a different directory exists in the Working Directory or Start In f
of the Properties dialog box for the executable, then it is the initial current working direc
Under UNIX, the initial current working directory is the directory from which you invoke t
executable. You can create an absolute path for a file in the executable directory by us
GetProjectDir and MakePathname .

Error Checking in Your Standalone Executable or DLL
Usually, you enable debugging and the Break on Library Errors option while you devel
your application in LabWindows/CVI. With these features enabled, LabWindows/CVI che
for programming errors in your source code. Consequently, you might have a tendency
relax your own error checking.

When you create a standalone executable program or DLL, all your source modules a
compiled. Compiled modules always disable debugging and the Break on Library Erro
option, resulting in smaller and faster code. Thus, you must perform your own error che
when you create a standalone executable program or DLL. Refer to Chapter 9, Checking for
Errors in LabWindows/CVI, for details about performing error checking in your code.
© National Instruments Corporation 7-19 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 8-1 LabWindows/CVI Programmer

00ProRef.book : 06chap08.fm Page 1 Monday, March 9, 1998 3:23 PM
8

n
e,
e

o

Distributing Libraries
and Function Panels

This chapter describes how to distribute libraries, add libraries to a user’s Library menu, and
specify library dependencies.

How to Distribute Libraries
You can distribute libraries for other users to include in their Library menu. You must create
a function panel (.fp) for each library program file. If you do not want to develop functio
panels for the library functions, create a .fp file without any classes or functions. In that cas
LabWindows/CVI loads the library at startup but does not include the library name in th
Library menu. This is useful when the library supports other libraries and contains no
user-callable functions.

Adding Libraries to User’s Library Menu
Normally, users must manually add libraries to the Library menu using the Library Options
command in the Project window Options menu. However, you can insert your libraries int
the user’s Library menu by modifying the user’s cvi.ini file under Windows 3.1,
.cvi.ini under UNIX, or the Registry under Windows 95/NT.

Under Windows 3.1 and UNIX, the modini program is in the LabWindows/CVI bin
subdirectory for this purpose. A documentation file called modini.doc and the source code
are in the same directory.

Under Windows 95/NT, the modreg program is in the LabWindows/CVI bin subdirectory
for this purpose. A documentation file called modreg.doc and the source code are in the
same directory.

Assume that you install function panels for two libraries in the following location:

c:\newlib\lib1.fp

c:\newlib\lib2.fp
Reference Manual

Chapter 8 Distributing Libraries and Function Panels

an

ch it

me
 must
ories

00ProRef.book : 06chap08.fm Page 2 Monday, March 9, 1998 3:23 PM
To add the libraries to the user’s Library menu under Windows 3.1 and UNIX, your modini
command file must be:

add Libraries LibraryFPFile "c:\newlib\lib1.fp"

add Libraries LibraryFPFile "c:\newlib\lib2.fp"

After the user installs the library files, the modini program must be run on the user’s disk
using cvi.ini and the command file.

To add the libraries to the user’s Library menu under Windows 95/NT, your modreg
command file must be:

setkey [HKEY_CURRENT_USER\Software\National Instruments]

appendkey CVI\@latestVersion

add Libraries LibraryFPFile "c:\newlib\lib1.fp"

add Libraries LibraryFPFile "c:\newlib\lib2.fp"

After the user installs the library files, the modreg program must be run on the user’s disk
using the command file.

Caution LabWindows/CVI must not be running when you use the modini or modreg
program to modify cvi.ini or the Registry. If LabWindows/CVI is running while
you use these programs, you will lose your changes.

Specifying Library Dependencies
When one library you distribute is dependent upon another library you distribute, you c
specify this dependency in the function panel file for the dependent library. When
LabWindows/CVI loads the dependent library, it attempts to load the libraries upon whi
depends. Use the .FP Auto-Load List command in the Edit menu of the Function Tree Editor
window of the dependent library to list the .fp files of the libraries upon which it depends.
Refer to the Function Tree Editor chapter of the LabWindows/CVI Instrument Driver
Developers Guide for details on this command.

LabWindows/CVI can find the required libraries most easily when they are all in the sa
directory as the dependent library. When you cannot put them in the same directory, you
add the directories in which the required libraries reside to the user’s Instrument Direct
list. The user can manually enter this information using the Instrument Directories
command in the Project window Options menu. Also, you can add to the Instrument
Directories list by editing cvi.ini under Windows 3.1, .cvi.ini under UNIX, or the
Registry under Windows 95/NT.

!

LabWindows/CVI Programmer Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Distributing Libraries and Function Panels

X,

00ProRef.book : 06chap08.fm Page 3 Monday, March 9, 1998 3:23 PM
National Instruments recommends that your installation program modify cvi.ini ,
.cvi.ini , or the Registry, automatically. Under Windows 3.1, the modini program is in the
LabWindows/CVI bin subdirectory for this purpose. A documentation file called
modini.doc and the source code are in the same directory.

Under Windows 95/NT, the modreg program is in the LabWindows/CVI bin subdirectory
for this purpose. A documentation file called modreg.doc and the source code are in the
same directory.

Assume that you install two .fp files in the following locations:

c:\newlib\liba.fp

c:\genlib\libb.fp

If liba depends on libb , you must add the following path to the user’s Instrument
Directories list:

c:\genlib

For LabWindows/CVI to be able to find the dependent file under Windows 3.1 and UNI
your modini command file must be,

add InstrumentDirectories InstrDir "c:\genlib"

After the user installs the library files, the modini program must be run on the user’s disk
using cvi.ini and the command file.

For LabWindows/CVI to be able to find the dependent file under Windows 95/NT, your
modreg command file must be,

setkey [HKEY_CURRENT_USER\Software\National Instruments]

appendkey CVI\@latestVersion

add InstrumentDirectories InstrDir "c:\gewlib"

After the user installs the library files, the modreg program must be run on the user’s disk
using the command file.

Caution LabWindows/CVI must not be running when you use the modini or modreg
program to modify cvi.ini or the Registry. If LabWindows/CVI is running while
you use these programs, you will lose your changes.

!

© National Instruments Corporation 8-3 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation 9-1 LabWindows/CVI Programmer

00ProRef.book : 06chap09.fm Page 1 Monday, March 9, 1998 3:23 PM
9

orts

the
I
ave a
one
maller
o

ontrol
that
er
her
rns

ypes
 call.
f

tion.

 code
blem
Checking for Errors in
LabWindows/CVI

This chapter describes LabWindows/CVI error checking and how LabWindows/CVI rep
errors in LabWindows/CVI libraries and compiled external modules.

When you develop applications in LabWindows/CVI, you usually have debugging and
Break on Library Errors option enabled. With these features enabled, LabWindows/CV
identifies and reports programming errors in your source code. Therefore, you might h
tendency to relax your own error checking. However, in compiled modules and standal
executables, debugging and the Break on Library Errors are disabled. This results in s
and faster code, but you must perform your own error checking. This fact is important t
remember because many problems can occur in compiled modules and standalone
executables even if the program works inside the environment.

It is important to check for errors that can occur because of external factors beyond the c
of your program. Examples include running out of memory or trying to read from a file
does not exist. malloc , fopen , and LoadPanel are examples of functions that can encount
such errors. You must provide your own error checking for these types of functions. Ot
functions return errors only if your program is incorrect. The following function call retu
an error only if pnl or ctrl is invalid.

SetCtrlAttribute(pnl, ctrl, ATTR_DIMMED, FALSE);

The Break on Library Errors feature of LabWindows/CVI adequately checks for these t
of errors while you develop your program, and external factors do not affect this function
Therefore, it is generally not necessary to perform explicit error checking on this type o
function call.

One method of error checking is to check the status of function calls upon their comple
Most functions in commercial libraries return errors when they encounter problems.
LabWindows/CVI libraries are no exception. All the functions in the LabWindows/CVI
libraries and in the instrument drivers available from National Instruments return a status
to indicate the success or failure of execution. These codes help you determine the pro
when the program does not run as you expected it to. This chapter describes how
LabWindows/CVI reports these status codes and some techniques for checking them.
Reference Manual

Chapter 9 Checking for Errors in LabWindows/CVI

t
an

r
r

n
oth of
 detect

or the
rt the

blem
andler

check
n the

t. You
 exists,
y and

orts

00ProRef.book : 06chap09.fm Page 2 Monday, March 9, 1998 3:23 PM
Note Status codes are integer values. These values are either common to an entire
library of functions, or specific to one function. Libraries that have a common se
of codes have a listing at the end of the chapter or manual they appear in. You c
find the error message for each integer value there. In addition, each of these
libraries contains a function you can call to translate the integer value to an erro
string. When an error code is specific to a function, you can find a description fo
it in the function description in the LabWindows/CVI manual set. The error
description also appears in the online help of the library function panels in
LabWindows/CVI.

Error Checking
LabWindows/CVI functions return status codes in one of two ways—either by a functio
return value, or by updating a global variable. In some cases, LabWindows/CVI uses b
these methods. In either case, it is a good idea to monitor these values so that you can
an error and take appropriate action. A common technique for error checking is to monit
status of functions, and when a function reports an error, pause the program and repo
error to the user through a pop-up message. For example, LoadPanel returns a positive
integer when it successfully loads a user interface panel into memory. However, if a pro
occurs, the return value is negative. The following example shows an error message h
for LoadPanel .

panelHandle = LoadPanel (0, "main.uir", PANEL);

if (panelHandle < 0) {

ErrorCheck ("Error Loading Main Panel", panelHandle,

 GetUILErrorString (panelHandle));

}

When a function reports status through a separate function, as in the RS-232 Library,
for errors in a similar way. In this case, the status function returns a negative value whe
original function fails.

bytesRead = ComRd (1, buffer, 10);

if (ReturnRS232Error() < 0) {

ErrorCheck ("Error Reading From ComPort #1", ReturnRS232Error(),

 GetRS232ErrorString(ReturnRS232Error()));

}

Notice that the above function also returns the number of bytes read from the serial por
can compare the number of bytes read to the number you request, and if a discrepancy
take the appropriate action. Notice that the error codes differ between the RS-232 Librar
the User Interface Library. A section describing how each LabWindows/CVI library rep
errors follows this section.
LabWindows/CVI Programmer Reference Manual 9-2 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

ion or
ror

ors.
ctions

Some

rary

ey

ary

00ProRef.book : 06chap09.fm Page 3 Monday, March 9, 1998 3:23 PM
After your program detects an error, it must take some action to either correct the situat
prompt the user to select a course of action. The following example shows a simple er
response function.

void ErrorCheck (char *errMsg, int errVal, char *errString)

{

char outputMsg[256];

int response;

Fmt (outputMsg, "%s (Error = %d).\n%s\nContinue? ",

errMsg,errVal,errString);

response = ConfirmPopup ("ErrorCheck", outputMsg);

if (response == 0)

exit (-1);

}

Status Reporting by LabWindows/CVI Libraries
and Instrument Drivers

This section describes how LabWindows/CVI libraries and instrument drivers report err
Notice that libraries that return their status code using global variables or separate fun
sometimes report additional status information through return values.

User Interface Library
The User Interface Library routines return a negative value when they detect an error.
functions, such as LoadPanel , return positive values for a successful completion. This
library uses a common set of error codes, which the LabWindows/CVI User Interface
Reference Manual and the function panel help list. You can use the function
GetUILErrorString to get the error message associated with each User Interface Lib
error code.

Analysis/Advanced Analysis Libraries
The Analysis and Advanced Analysis Library functions return a negative value when th
detect an error. This library uses a common set of error codes, which the LabWindows/CVI
Standard Libraries Reference Manual, the LabWindows/CVI Advanced Analysis Reference
Manual, and the function panel help list. You can use the function
GetAnalysisErrorString to get the error message associated with each Analysis Libr
error code.
© National Instruments Corporation 9-3 LabWindows/CVI Programmer Reference Manual

Chapter 9 Checking for Errors in LabWindows/CVI

ror.
 not in

or.
 not in

ode.

ny
cking
help

00ProRef.book : 06chap09.fm Page 4 Monday, March 9, 1998 3:23 PM
Easy I/O for DAQ Library
The Easy I/O for DAQ Library functions return a negative value when they detect an er
They return a positive value as a warning when they are able to complete their task but
the way you might expect. This library uses a common set of error codes. The positive
warning codes are the same absolute values as the negative error codes. Refer to the
LabWindows/CVI Standard Libraries Reference Manual or the function panel help for a
listing of the error codes and information on the individual functions. You can use
GetDAQErrorString to get the error message associated with each Easy I/O for DAQ
Library error or warning code.

Data Acquisition Library
The Data Acquisition Library functions return a negative value when they detect an err
They return a positive value as a warning when they are able to complete their task but
the way you might expect. This library uses a common set of error codes. The positive
warning codes are the same absolute values as the negative error codes.

Refer to the back of the NI-DAQ Function Reference Manual for PC Compatibles or the
function panel help for a listing of the error codes. You can use GetNIDAQErrorString to
get the error message associated with each Data Acquisition Library error or warning c

VXI Library
The VXI Library uses a variety of global variables and function return codes to report a
error that occurs. You must check each function description to determine what error che
might be necessary. Refer to the specific VXI function reference manual or the on-line
for a listing of the error codes.

GPIB/GPIB 488.2 Library
The GPIB libraries return status information through two global variables called ibsta
andiberr .

Note If your program uses multiple threads, use the ThreadIbsta and ThreadIberr
functions in place of the ibsta and iberr global variables.

Note The GPIB Library functions return the same value that they assign to ibsta . You
can choose to use either the return values, ibsta , or ThreadIbsta .

The ERR bit within ibsta indicates an error condition. If this bit is not set, iberr does not
contain meaningful information. If the ERR bit is set in ibsta , the error condition is stored in
LabWindows/CVI Programmer Reference Manual 9-4 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

anel

f the
tains
h

es

urn a
ight
de

in
r two

an
r

uses

e or
 use

00ProRef.book : 06chap09.fm Page 5 Monday, March 9, 1998 3:23 PM
iberr . After each GPIB call, your program should check whether the ERR bit is set to
determine if an error has occurred, as shown in the following code segment.

if (ibwrt(bd[instrID], buf, cnt) & ERR)

PREFIX_err = 230;

Refer to your NI-488.2 Function Reference and user manuals for detailed information on
GPIB global variables and listings of status and error codes. LabWindows/CVI function p
help also has listings of status and error codes.

RS-232 Library
The RS-232 library returns status information through a global variable called rs232err . If
this variable is negative after the function returns, an error occurred. Notice that many o
functions return a value in addition to setting the global variable. Usually, this value con
information on the result of the function that can also be used to detect a problem. Eac
function should be checked individually. Refer to the RS-232 section in the LabWindows/CVI
Standard Libraries Reference Manual or the function panel help for a listing of the error cod
and information on the individual functions. You can use GetRS232ErrorString to get the
error message associated with each RS-232 Library error code.

Note If your program uses multiple threads, use the ReturnRS232Err function in
place of the rs232err global variable.

VISA Library
The VISA Library functions return a negative value when they detect an error. They ret
positive value as a warning when they can complete their task but not in the way you m
expect. This library uses a common set of error and warning codes, but the warning co
values are entirely separate from the error code values. The error codes always conta
0xBFFF in the upper two bytes. The warning codes always contain 0x3FFF in the uppe
bytes. Refer to the NI-VISA Programmer Reference Manual or the function panel help for a
listing of the error and warning codes and information on the individual functions. You c
use viStatusDesc to obtain the error message associated with each VISA Library erro
code.

IVI Library
The IVI Library functions return a negative value when they detect an error. This library
a common set of error codes. Refer to the LabWindows/CVI Instrument Driver Developers
Guide or the function panel help for a listing of the error codes and information on the
individual functions. IVI Library functions sometimes also provide a secondary error cod
an elaboration string to give you additional information about an error condition. You can
Ivi_GetErrorInfo to obtain the primary error code, secondary error code, and the
elaboration string. You can use Ivi_GetErrorMessage to obtain the error message
associated with each IVI Library error code.
© National Instruments Corporation 9-5 LabWindows/CVI Programmer Reference Manual

Chapter 9 Checking for Errors in LabWindows/CVI

 uses

ode.

ry
e

ode.

rror.

is

rty

ep in
nt
or array
t to

 end
ust

last

00ProRef.book : 06chap09.fm Page 6 Monday, March 9, 1998 3:23 PM
TCP Library
The TCP Library functions return a negative value when they detect an error. This library
a common set of error codes, which the LabWindows/CVI Standard Libraries Reference
Manual and the LabWindows/CVI function panel help list. You can use
GetTCPErrorString to get the error message associated with each TCP Library error c

DDE Library
The DDE Library functions return a negative value when they detect an error. This libra
uses a common set of error codes, which the LabWindows/CVI Standard Libraries Referenc
Manual and the LabWindows/CVI function panel help list. You can use the function
GetDDEErrorString to get the error message associated with each DDE Library error c

ActiveX Automation Library
The ActiveX Automation Library functions return a negative value when they detect an e
This library uses a common set of error codes. Refer to the LabWindows/CVI Standard
Libraries Reference Manual or the function panel help for a listing of the error codes and
information on the individual functions. You can use CA_GetAutomationErrorString to
get the error message associated with each ActiveX Automation Library error code.

X Property Library
The X Property Library functions return a negative value when they detect an error. Th
library uses a common set of error codes, which the LabWindows/CVI Standard Libraries
Reference Manual and the LabWindows/CVI function panel help list. You can use the
function GetXPropErrorString to get the error message associated with each X Prope
Library error code.

Formatting and I/O Library
This library contains the file I/O, string manipulation, and data formatting functions. All
functions return negative error codes when they detect an error. However, you must ke
mind an important fact. When you enable debugging, the LabWindows/CVI environme
keeps track of the sizes of strings and arrays. If it detects any attempt to access a string
beyond its boundary, the environment halts the program and informs you. It is importan
remember that this feature works only when you execute source code in the
LabWindows/CVI development environment. The string functions can write beyond the
of a string or array without detection, resulting in corruption of memory. Therefore, you m
use the Formatting and I/O functions on strings and arrays with caution.

In addition to the return codes, the GetFmtErrNdx and NumFmtdBytes functions
return information on how the last scanning and formatting function executed. The
GetFmtIOError function returns a code that contains specific error information on the
LabWindows/CVI Programmer Reference Manual 9-6 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

ual

each

s also

 that

ually
ccur

ror

ration

e
n the

00ProRef.book : 06chap09.fm Page 7 Monday, March 9, 1998 3:23 PM
Formatting and I/O Library function that performed file I/O. The GetFmtIOErrorString
function converts this code into an error string. Refer to the LabWindows/CVI Standard
Library Reference Manual for more information.

Utility Library
Utility Library functions report error codes as return values. You can check each individ
function description in the LabWindows/CVI Standard Libraries Reference Manual or in the
LabWindows/CVI function panel help to determine the error conditions that can occur in
function.

ANSI C Library
Some of the ANSI C library functions report error codes as return values. Some function
set the global variable errno . Generally, the functions do not clear errno when they return
successfully. To learn more about these values, you can consult a publication such as C: A
Reference Manual cited in the Related Documentation section of About This Manual. Also,
you can use the LabWindows/CVI function panel help to determine the error conditions
can occur in each function.

LabWindows/CVI Instrument Drivers
Instrument drivers from National Instruments use a standard status reporting scheme.
Functions report error codes as return values, and you can check each function individ
in the LabWindows/CVI function panel help to determine the error conditions that can o
in each function.

Instrument drivers that comply with the VXIplug&play standard contain two error reporting
functions. Prefix _error_query , where Prefix is the instrument prefix, allows you to
query the error queue in the physical instrument. If the instrument does not have an er
queue, Prefix _error_query returns the VI_WARN_NSUP_ERROR_QUERY warning code
from the VISA Library. Prefix _error_message translates the error and warning codes
that the other instrument driver functions return into descriptive strings.

IVI instrument drivers are VXIplug&play compliant and so contain the
Prefix _error_query and Prefix _error_message functions. In addition, IVI
instrument driver functions sometimes also provide a secondary error code or an elabo
string to give you additional information about an error condition. You can use
Prefix _GetErrorInfo to obtain the primary error code, secondary error code, and th
elaboration string for the first error that occurred on a particular instrument session or i
current thread since you last called Prefix _GetErrorInfo . You also can use the
Prefix _GetAttribute function to obtain each of these data items, individually, for the
most recent function call on a particular instrument session.
© National Instruments Corporation 9-7 LabWindows/CVI Programmer Reference Manual

© National Instruments Corporation A-1 LabWindows/CVI Programmer

00ProRef.book : 07AppA.fm Page 1 Monday, March 9, 1998 3:23 PM
A

rors,
I.

Errors and Warnings

This appendix contains an alphabetized list of compiler warnings, compiler errors, link er
DLL loading errors, and external module loading errors generated by LabWindows/CV

Table A-1. Error Messages

Error Message Type Error Comment

flag is valid only

with o, x, e, f, and g

specifiers.

Non-Fatal
Run-time Error

Ensure that you use the correct format
specifier, and that no extra characters exist
before the format specifier.

#elif missing constant

expression.

Compile
Error

Ensure that a conditional expression follows
#elif on the same line.

#if missing constant

expression.

Compile
Error

Ensure that a conditional expression follows
#if on the same line.

#ifdef expects an

identifier.

Compile
Error

Ensure that an identifier follows #ifdef on
the same line.

#ifndef expects an

identifier.

Compile
Error

Preprocessor conditional directive #ifndef
requires an identifier following it on the
same line. Make sure that an identifier
follows #ifndef on the same line.

#line directive cannot

specify line 0.

Compile
Error

#line preprocessor directive requires a
non-zero line number value.

#line directive cannot

specify line greater

than 32767.

Compile
Error

#line preprocessor directive cannot set the
line greater than 32,767.

#line directive expects

numeric argument.

Compile
Error

#line preprocessor directive requires a line
number value to be specified following
#line .

at beginning of macro

definition.

Compile
Error

preprocessing token is at the beginning of
a macro definition. Ensure that a
preprocessing token precedes ##.
Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 2 Monday, March 9, 1998 3:23 PM
at end of macro

definition.

Compile
Error

preprocessing token is at the end of a
macro definition. Ensure that a
preprocessing token(s) follows ##.

, or) expected. Compile
Error

Ensure that the function macro argument list
terminates with a) and that a , separates all
the macro arguments.

0 flag is not valid with

c, s, p, and n

modifiers.

Non-Fatal
Run-time Error

Use of an incorrect format specifier or use of
a field width starting with 0 might cause this
error.

Aborted load of library

FILE.

Link Error Library load operation aborted. A more
specific diagnostic of the library load error
precedes this message.

Aborted load of member

NAME from library FILE.

Link Error Library member load operation aborted. A
more specific diagnostic of the library
member load error precedes this message.

Aborted load of object

module FILE.

Link Error Object file load aborted. A more specific
diagnostic of the object file load error
precedes this message.

Absolute segments not

supported: segment name

NAME.

PC/Windows
Load Error

OMF object file contains a segment to load
at an absolute address.

Anonymous enum declared

inside parameter list

has scope only for this

declaration.

Compile
Warning

Enumeration declared in the parameter list
has scope only within the parameter list. As
a result, its type is incompatible with
all other types. You must declare the
enumeration type before declaring function
types that use it.

Anonymous struct

declared inside

parameter list has scope

only for this

declaration.

Compile
Warning

Structure declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You must declare the structure type
before declaring function types that use it.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-2 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 3 Monday, March 9, 1998 3:23 PM
Anonymous union declared

inside parameter list

has scope only for this

declaration.

Compile
Warning

Union declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You must declare the union type
before declaring function types that use it.

Argument 4 must be 0

or 1.

Fatal
Run-time Error

Value of the argument to the library function
must be 0 or 1.

Argument NUMBER must be

0, 1, or 2.

Fatal
Run-time Error

Value of the argument to the library function
must be 0, 1, or 2.

Argument must be a

function pointer to the

correct type of callback

function.

Non-Fatal
Run-time Error

Argument to the function is not a pointer to
the expected type of callback function.

Argument must be an open

stream.

Fatal
Run-time Error

Argument to the I/O library function must be
one of the standard streams (stdin ,
stdout , stderr) or a stream you open with
the fopen() or freopen() functions.

Argument must be

character.

Fatal
Run-time Error

Value of the argument to the library function
must be less than 256 .

Array argument too

small.

Fatal
Run-time Error

Library function requires an array that is
larger than the specified argument. Make
sure you declare or allocate the array with
sufficient elements for the function call.

Array argument too small

(NUMBER bytes). Argument

must contain at least

NUMBER bytes (NUMBER

elements).

Fatal
Run-time Error

Library function requires an array that is
larger than the specified argument. Make
sure you declare or allocate the array with
the number of elements this error message
reports.

Array index (NUMBER) too

large (maximum: NUMBER).

Non-Fatal
Run-time Error

You indexed an array past the last element.

Assertion error:

EXPRESSION.

Fatal
Run-time Error

Value of the argument EXPRESSION to the
Standard C Library macro assert is 0.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-3 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 4 Monday, March 9, 1998 3:23 PM
Assignment between

TYPE and TYPE is

compiler-dependent.

Compile
Warning

Although allowed, use caution because an
assignment of an integer type expression
value to an enum type target might not
correspond to any known enumeration
constant for that enum type. Depending on
the enumeration, the size of the enum type
can be 1, 2, or 4 bytes and therefore may be
incapable of representing all integer values.

Assignment of invalid

pointer value.

Non-Fatal
Run-time Error

Value you assigned to a pointer is an invalid
pointer value. Check the right side of the
assignment to determine if it is the result of
a previous invalid pointer operation.

Assignment of

out-of-bounds pointer:

NUMBER bytes before

start of array.

Non-Fatal
Run-time Error

Value you assigned to the pointer refers to an
invalid location, which is NUMBER bytes
before an array. The right side of the
assignment is probably the result of previous
illegal pointer arithmetic.

Assignment of

out-of-bounds pointer:

NUMBER bytes past end of

array.

Non-Fatal
Run-time Error

Value you assigned to the pointer refers to an
invalid location, which is NUMBER bytes past
the end of an array. The right side of the
assignment is probably the result of previous
illegal pointer arithmetic.

Assignment of pointer to

freed memory.

Non-Fatal
Run-time Error

Value you assigned to the pointer is invalid
because it refers to a location in dynamic
memory that the free function deallocated.
After memory is free, all pointers into that
block of memory are invalid.

Assignment of

uninitialized pointer

value.

Non-Fatal
Run-time Error

Value you assigned to the pointer is invalid
because it was not initialized. The right side
of the assignment is probably an
uninitialized local variable or an object in
dynamic memory that you allocated with
malloc . Initialize local variables and
dynamic memory before you use them.
calloc both allocates and initializes
dynamic memory.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-4 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 5 Monday, March 9, 1998 3:23 PM
Assignment to const

identifier NAME.

Compile
Error

const variables or parameters are read-only
values that you cannot modify once
initialized. Ensure that no assignment
operations modify the identifier.

Assignment to const

location.

Compile
Error

const variables or parameters are read-only
values that you cannot modify once
initialized. Ensure that no assignment
operations modify the lvalue (such as an
array reference, or a pointer dereference)
that specifies the const location.

Attempt to free invalid

pointer expression.

Fatal
Run-time Error

Pointer value you passed to the free
function is invalid. It is probably the result of
a previous invalid pointer operation.

Attempt to free pointer

to freed memory.

Fatal
Run-time Error

Pointer value you passed to the free
function refers to a location in dynamic
memory that you already deallocated.

Attempt to free

uninitialized pointer.

Fatal
Run-time Error

Pointer value you passed to the free
function is invalid because you did not
initialize it. It is probably an uninitialized
local variable. Initialize local variables
before you use them.

Attempt to read beyond

end of array.

Non-Fatal
Run-time Error

Source array is not large enough to satisfy
the destination specifiers.

Attempt to read beyond

end of string.

Non-Fatal
Run-time Error

Source string is not large enough to satisfy
the destination specifiers.

Attempt to realloc

invalid pointer

expression.

Fatal
Run-time Error

Pointer value you passed to the realloc
function is invalid. It is probably the result of
a previous invalid pointer operation.

Attempt to realloc

pointer to freed memory.

Fatal
Run-time Error

Pointer value you passed to the realloc
function refers to a location in dynamic
memory that you already deallocated.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-5 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 6 Monday, March 9, 1998 3:23 PM
Attempt to realloc

uninitialized pointer.

Fatal
Run-time Error

Pointer value you passed to the realloc
function is invalid because you did not
initialize it. It is probably an uninitialized
local variable. You must initialize local
variables before you use them.

Attempt to write beyond

end of array.

Non-Fatal
Run-time Error

Output array is smaller than the given format
specifiers and input parameters require.

Attempt to write beyond

end of string.

Non-Fatal
Run-time Error

Output string is smaller than the given
format specifiers and input parameters
require.

b modifier must precede

o modifier.

Non-Fatal
Run-time Error

If both the b and o modifiers are present, the
b modifier must precede the o modifier.

Bad BSS section

encountered while

reading external module:

FILE.

Object Load
Error

Object module is corrupted or is
of a type that you cannot load into
LabWindows/CVI.

Bad COFF Library header. Object Load
Error

Library file you are loading is either
corrupted or not in the COFF format.

Bad COFF Library member

header.

Object Load
Error

COFF library you are loading contains a
module that is corrupted or in an invalid
format.

Bad location code: OMF

record position NUMBER:

OMF record type NAME.

Link Error Object module is corrupted or is of a type
that you cannot load into LabWindows/CVI.

Bad magic number

encountered while

reading external module:

FILE.

Link Error Object module is corrupted or is of a type
that you cannot load into LabWindows/CVI.

Bad method: OMF record

position NUMBER: OMF

record type NAME.

Link Error Object module is corrupted or is of a type
that you cannot load into LabWindows/CVI.

Bad name: OMF record

position NUMBER: OMF

record type NAME.

Link Error Object module is corrupted or is of a type
that you cannot load into LabWindows/CVI.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-6 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 7 Monday, March 9, 1998 3:23 PM
Bad OMF record at

position NUMBER: OMF

record type NAME.

PC/Windows
Load Error

OMF object file contains an unknown object
record. Make sure that the object file is OMF
and conforms to the 32-bit format
LabWindows/CVI supports.

Bad relocation record

encountered while

reading external module:

FILE.

Link Error Object module is corrupted or is of a type
that you cannot load into LabWindows/CVI.

Bad OMF record at

position NUMBER: OMF

record type NAME.

PC/Windows
Load Error

OMF object file contains an unknown object
record. Make sure that the object file is OMF
and conforms to the 32-bit format
LabWindows/CVI supports.

Byte ordering is

invalid.

Non-Fatal
Run-time Error

Byte ordering that the o modifier specifies is
not valid for the size of the integer. The
number of digits following theo must match
the size of the integer, and the digits must fall
in the range zero to size of the integer–1.

c modifier valid only

with l format specifier.

Non-Fatal
Run-time Error

c modifier is only valid for the l format
specifier.

The callback function,

NAME, specified in the

UIR file, does not have

required prototype.

Non-Fatal
Run-time Error

You specified the NAME function as a
callback function for an item in a user
interface resource file, but it does not have
the correct type to be a callback function.
Callback functions must have one of the
callback types specified in the user interface
library header. The function will not be
called.

The callback function,

NAME, specified in the

UIR file, is not a known

function.

Non-Fatal
Run-time Error

You specified the NAME function as a
callback function for an item in a user
interface resource file, but the function does
not exist.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-7 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

.

00ProRef.book : 07AppA.fm Page 8 Monday, March 9, 1998 3:23 PM
Calling conventions have

no effect on variables;

calling convention

ignored. The position of

the calling convention

modifier may be

incorrect.

Compile
Warning

You placed a calling convention keyword
before a variable name.

For function pointers, you must place the
calling convention to the left of the "*" , for
example:

int (__cdecl * funptr)();

Cannot concatenate wide

and regular string

literals.

Compile
Warning

Make sure the string literals you concatenate
are either both wide string literals or regular
string literals.

Cannot free: memory not

allocated by malloc() or

calloc().

Fatal
Run-time Error

Pointer value you passed to the function
free is invalid because it does not point to
dynamic memory allocated by malloc or
calloc . free can deallocate only pointers
you obtain from one of these two functions.

Cannot generate glue for

a function without a

prototype: NAME.

Glue Code
Generation
Error

In order to generate glue code for a DLL
function, you must specify a complete
prototype for the function. You must specify
the types of the parameters in the prototype

Cannot generate glue for

a static function:

FUNCTION.

Glue Code
Generation
Error

You cannot export static functions in a DLL;
so it is useless to generate glue code for
them.

Cannot generate glue for

a variable argument

function: FUNCTION.

Glue Code
Generation
Error

In LabWindows/CVI for Windows 3.1, you
cannot use DLL functions that accept a
variable number of arguments.

Cannot initialize

undefined TYPE.

Compile
Error

You attempted to initialize a declaration of
an incomplete struct or union type, such
as a struct or union type whose members
you have not yet specified. Ensure that the
initialization appears after the full struct or
union declaration.

Cannot link variable

NAME to import library

without __import keyword

in declaration.

Link Error Variable that you have declared as extern is
defined in a DLL import library, but you did
not include the __import qualifier in the
declaration.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-8 © National Instruments Corporation

Appendix A Errors and Warnings

t

00ProRef.book : 07AppA.fm Page 9 Monday, March 9, 1998 3:23 PM
Cannot link variable

NAME to import

library without

declspec(dllimport)

keyword in declaration.

Link Error Variable that you have declared as extern is
defined in a DLL import library, but you did
not include the declspec(dllimport)
qualifier in the declaration.

Case label must be a

constant integer

expression.

Compile
Error

Case labels must be known integer values a
compile time; make sure the case label
conforms to the requirements for a constant
integer expression.

Cast from TYPE to TYPE

is illegal in constant

expressions.

Compile
Error

You cannot cast a pointer type to arithmetic
type in a constant expression.

Cast from TYPE to TYPE

is illegal.

Compiler Error ANSI C does not allow a cast between the
two types.

COFF Name too long. Object Load
Error

COFF object or library you are loading
contains a symbol name that is longer than
the maximum legal length.

Comparison involving

null pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison has the value NULL. Both
expressions in pointer comparisons must
point into the same array object.

Comparison involving

uninitialized pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because you did not
initialize it.

Comparison of pointers

to different objects.

Non-Fatal
Run-time Error

Pointer expressions in the comparison point
to two distinct objects. Both expressions in
pointer comparisons must point into the
same array object.

Comparison of pointers

to freed memory.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because it refers to a
location in dynamic memory that you
deallocated with the free function. Once
you free the memory, all pointers into that
block of memory become invalid.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-9 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

t

u

00ProRef.book : 07AppA.fm Page 10 Monday, March 9, 1998 3:23 PM
Compound statements

nested too deeply.

Compile
Error

Program has exceeded the compiler
limitations on the number of nested
compound statements; reduce the depth of
the nested compound statements in the
program.

Conditional inclusion

nested too deeply.

Compile
Error

Program has exceeded the compiler
limitations on the number of nested
conditional preprocessor directives; reduce
the depth of the conditional preprocessor
directives nested in the program.

Conflicting GRPDEFs:

group name NAME.

Link Error Object module is probably corrupted.

Conflicting argument

declarations for

function FUNCTION.

Compile
Error

Arguments of the named function prototype
declaration do not match those for the
old-style function definition of the same
name; ensure that the function declaration
matches that of the old-style function
definition. A better course is to change the
old-style function definition to a new-style
definition that matches the function
prototype declaration.

Constant expression must

be integer.

Compile
Error

Constant integer expression is expected in
this context. Ensure the expression conforms
to the semantics of a constant expression tha
computes an integer value.

Conversion from

TYPE to TYPE is

compiler-dependent.

Compile
Warning

Avoid converting between a function pointer
and other types of pointers, because you
should not access functions as data, and yo
cannot execute data as functions.

Could not allocate stack

space. Try decreasing

the Maximum stack size

option in the Run

Options dialog.

Fatal
Run-time Error

There is insufficient memory to allocate the
Maximum Stack Size you have specified.
LabWindows/CVI allocates the maximum
size on the stack at the beginning of
execution.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-10 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 11 Monday, March 9, 1998 3:23 PM
Could not find the DLL

header file HEADER FILE.

Glue Code
Generation
Error

LabWindows/CVI could not find the file that
contains the prototypes for the functions in
the DLL. When generating glue code, ensure
that you specify the correct filename. When
loading a DLL, ensure that a header file with
the same base name as the DLL exists.

d modifier not valid in

Fmt/FmtOut/FmtFile.

Non-Fatal
Run-time Error

d modifier cannot be used in Fmt, FmtOut ,
or FmtFile .

Declaration of NAME does

not match previous

declaration at POSITION.

Compile
Error

You declared a variable or function twice,
and its type in the first declaration does not
match its type in the second declaration.

Declared parameter NAME

is missing.

Compile
Error

Declaration for a parameter in an old style
parameter list is missing, or the declaration
does not match to any parameter name in the
list. Ensure that the names in the old-style
function definition have corresponding
parameter declarations. A better course is to
convert the old-style function definition to
the new-style function definition requiring
prototypes.

"defined" expects an

identifier argument.

Compile
Error

Preprocessor defined() operator requires
a single identifier argument; ensure that you
use an identifier and not an expression.

Dereference of a NUMBER

byte object where only

NUMBER bytes exist.

Fatal
Run-time Error

Pointer expression you dereferenced points
to an object that is smaller than the type of
the dereference. For example, if an int
pointer points to an object of type char , you
cannot dereference the pointer because it
points to only 1 byte, whereas an int
requires 4 bytes.

Dereference of data

pointer used as a

function.

Fatal
Run-time Error

You converted a data pointer to a function
pointer and then dereferenced it. You can
examine or modify data, but you cannot
execute it as a function.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-11 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

e

00ProRef.book : 07AppA.fm Page 12 Monday, March 9, 1998 3:23 PM
Dereference of function

pointer used as data.

Fatal
Run-time Error

You converted a function pointer to a
non-function pointer and then dereferenced
it. You can only execute functions and access
them as data.

Dereference of invalid

pointer expression.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid. It is probably the result of a previous
invalid pointer operation.

Dereference of null

pointer.

Fatal
Run-time Error

Pointer expression you dereferenced has the
value NULL and cannot be dereferenced.

Dereference of

out-of-bounds pointer:

NUMBER bytes (NUMBER

elements) before start

of array.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location before
the start of an array. The error message
shows the number of bytes and the number
of array elements in the array. The
expression is probably the result of previous
illegal pointer arithmetic.

Dereference of

out-of-bounds pointer:

NUMBER bytes (NUMBER

elements) past end of

array.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location past the
end of an array. The error message shows th
number of bytes and the number of array
elements past the end of the array. The
expression is probably the result of previous
illegal pointer arithmetic.

Dereference of pointer

to freed memory.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location in
dynamic memory that you deallocated with
the free function. Once memory is free, all
pointers into that block of memory become
invalid.

Dereference of unaligned

pointer.

Fatal
Run-time Error
[UNIX only]

Pointer expression you dereferenced is
invalid because it points to an address that
does not have the proper alignment for the
type of the dereferenced object.
SPARCstation architecture requires that
16-bit objects be halfword aligned, 32-bit
objects be word aligned, and 64-bit objects
be doubleword aligned.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-12 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 13 Monday, March 9, 1998 3:23 PM
Dereference of

uninitialized pointer.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because you did not initialize it. It is
probably an uninitialized local variable. You
must initialize local variables before you use
them.

Duplicate case label

NAME.

Compile
Error

Case label value appears more than once in
the switch statement. Eliminate any
duplicate case label values in the switch
statement.

Duplicate definition for

NAME previously declared

at POSITION.

Compile
Error

You redeclared a previously defined
parameter name; eliminate one of the
parameter declarations.

Duplicate field name

NAME in TYPE.

Compile
Error

You have already declared the member name
of the struct or union type. Eliminate one
of the member declarations from the struct or
union type declaration.

Dynamic memory is

corrupt.

Fatal
Run-time Error

LabWindows/CVI encountered corrupt data
while allocating or freeing dynamic
memory.

Empty declaration. Compile Error
or Warning

You did not declare an object or type. It is an
error if the empty declaration appears in the
context of an old-style parameter
declaration.

Elf library is out of

date.

Object Load
Error

LabWindows/CVI expects a more recent
version of the shared library (libelf.so)
that it uses to load ELF objects. As a result,
LabWindows/CVI is unable to read or write
object and library files.

'enum NAME' declared

inside parameter list

has scope only for this

declaration.

Compile
Warning

Enumeration you declared in the parameter
list has scope only within the parameter list.
As a result, its type is incompatible with all
other types. You must declare the
enumeration type before you declare
function types that use it.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-13 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

r.

00ProRef.book : 07AppA.fm Page 14 Monday, March 9, 1998 3:23 PM
Error at or near

character NUMBER in the

format string: STRING.

Non-Fatal
Run-time Error

Error exists in the format string at index
NUMBER. NUMBER is 1-based.

Error in Elf Library

encountered while

reading external module:

NAME.

Object Load
Error

Object module is corrupted or is of a type
that LabWindows/CVI cannot load.

Error: compiling FILE

for DLL exports.

DLL Import
Library
Creation Error

When creating a DLL using the Include File
method for specifying exported symbols,
an error occurred while compiling the
include file.

Error: Incompatible type

for function or variable

NAME in header FILE used

to specify exports.

DLL Link Error When creating a DLL using the Include File
method for specifying exported symbols, the
type of the symbol in the include file did not
match the type in the source file.

Expecting an enumerator

identifier.

Compile
Error

Compiler expects an enumeration constant
identifier after the opening { in an enum type
declaration.

Expecting an identifier. Compile
Error

Compiler expects an identifier in the current
syntactic context. Check the syntax of the
declaration, statement, or preprocessor
directive.

Expecting integer

constant, push, or pop.

Compile
Error

pack pragma requires at least one paramete

Extra default label. Compile
Error

default label has already appeared for this
switch statement. Eliminate the extraneous
default label.

Extraneous 0-width bit

field TYPE NAME ignored.

Compile
Warning

Named bit field has no width and therefore
has no storage allocated to it.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-14 © National Instruments Corporation

Appendix A Errors and Warnings

u

00ProRef.book : 07AppA.fm Page 15 Monday, March 9, 1998 3:23 PM
Extraneous formal

parameter

specification.

Compile
Error

This error occurs when the compiler is
processing what it assumes to be an old-style
function declaration and encounters what it
assumes to be the function’s parameter
names. If this is an old-style function
declaration, make sure that the parameter
names appear only in the function definition
and not in any declaration of that function. If
this is a new-style function declaration
(prototype), then probably the identifier that
the compiler assumes to be a parameter
name is really a typedef name. Make sure
that you previously declared the identifier as
a typedef.

Extraneous identifier

NAME.

Compile
Error

Identifier appears in a context where the
compiler expects a type name, such as in a
cast operation or as the operand of
sizeof() . Syntactically, a type name is a
declaration of a function or an object of that
type that omits the identifier.

Extraneous return value. Compile
Error

Return statement appears in a void function
and therefore no return value is necessary;
eliminate the expression from the return
statement.

Failed to load DLL FILE. Link Error LabWindows/CVI could not find the DLL.
Ensure that it is in one of the default
directories searched by Microsoft Windows,
or that it includes a complete path name.

Failed to open external

module.

Object Load
Error

LabWindows/CVI could not open the
external module for loading. Ensure that the
external module has read access and that yo
did not inadvertently rename or delete it.

Field name expected. Compile
Error

The compiler expects an identifier to follow
a . or –>.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-15 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

.

00ProRef.book : 07AppA.fm Page 16 Monday, March 9, 1998 3:23 PM
Field name missing. Compile
Error

Identifier is missing from a member (field)
declaration in a struct or union type
declaration. Make sure that an identifier
follows the member type specifier.

Format string integer is

too big.

Non-Fatal
Run-time Error

Integer used in the format string is too large

Found TYPE expected a

function.

Compile Error
or Warning

In an expression, the compiler expects the
name of a function or pointer to function to
precede a (. In a #pragma line, the compiler
expects the name of a function after the
pragma type.

Function definitions are

not allowed in the

interactive window.

Compile
Error

Function definitions cannot appear in the
Interactive Execution window.

Function FUNCTION:

(STRING == NUMBER).

Non-Fatal
Run-time Error

Library function could not perform its task.
The integer NUMBER is either the function
return value or the value of a global variable
that explains why the function failed. Refer
to the library function reference material for
more information about the error.

Function FUNCTION has

an unsupported return

type size.

Glue Code
Generation
Error

Glue code generation or the DLL loading
facilities do not support the return type of the
function.

Function requires extra

code to handle

Callbacks: FUNCTION.

Glue Code
Generation
Error

Automatic glue code generation facility
cannot generate complete code for this
function because one of its parameters is a
function pointer or it returns a function
pointer. You must generate and modify the
glue source code.

h modifier is only valid

with d, i, n, o, u, and

x specifiers.

Non-Fatal
Run-time Error

You can only use the h modifier with integer
format specifiers.

Header name literal

too long.

Compile
Error

Header name length exceeds
implementation limitations. Ensure that the
header name is properly terminated with a >
or a " , or shorten the string literal.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-16 © National Instruments Corporation

Appendix A Errors and Warnings

a

00ProRef.book : 07AppA.fm Page 17 Monday, March 9, 1998 3:23 PM
Ill-formed constant

integer expression.

Compile
Error

Constant integer expression that appears in
preprocessor directive is syntactically
invalid. Check the expression for trailing
tokens.

Ill-formed hexadecimal

escape sequence \xCHAR.

Compile
Error

Ensure that a hexadecimal character
([0–9, a–f, or A–F]) follows the \x escape
sequence introduction.

Ill-formed hexadecimal

escape sequence.

Compile
Error

Ensure that a hexadecimal character
(0–9, a–f, or A–F]) follows the \x escape
sequence introduction.

Illegal argument(s) to

library function.

Fatal
Run-time Error

One or more of the arguments to the library
function are invalid. Refer to the library
documentation for the function.

Illegal case label. Compile
Error

Case label appears outside the context of a
switch statement. Remove the case label.

Illegal character CHAR. Compile
Error

Character or character escape sequence
outside the legal character set for an ANSI C
source file appears in a context other than a
character string or character literal.

Illegal continue

statement.

Compile
Error

continue statement appears outside a loop
statement. Remove the continue
statement.

Illegal default label. Compile
Error

default label appears outside the context
of a switch statement. Remove the default
label.

Illegal expression. Compile
Error

Compiler encountered the wrong type of
token while parsing an expression where it
expected an identifier, string literal, integer
constant, floating constant, or (.

Illegal extern

definition of NAME; all

interactive window

variable definitions

must be static.

Compile
Error

No Interactive Execution window definitions
are visible outside the scope of the
Interactive Execution window. You cannot
initialize external symbols in the Interactive
Execution window.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-17 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

.

.

00ProRef.book : 07AppA.fm Page 18 Monday, March 9, 1998 3:23 PM
Illegal formal parameter

types.

Compile
Error

Parameter type of void appears in a function
prototype declaration that has more than one
argument. Remove the void parameter type
or change the function prototype so that it
contains only the single void parameter type

Illegal header name;

#include expects "FILE"

or <FILE>.

Compile
Error

Unexpected character follows an #include
where a header filename of the form "FILE "
or <FILE> is expected. It is also possible that
the header filename beginning quote
character is different than the expected
closing quote character, such as <FILE ".

Illegal initialization

for NAME.

Compile
Error

Ensure that the initialization is not for a
function declaration rather than a pointer to
a function.

Illegal initialization

for parameter.

Compile
Error

Parameter declarations cannot have default
value initializations in ANSI C. Eliminate
the initialization.

Illegal initialization

for parameter NAME.

Compile
Error

Parameter declarations cannot have default
value initializations in ANSI C. Eliminate
the initialization.

Illegal initialization

of extern NAME.

Compile
Error

You attempted to initialize an extern
declaration that appears in a local scope.
Eliminate the initialization.

Illegal return

type TYPE.

Compile
Error

Function is declared with an illegal return
type, or a return statement expression type is
not the same as the return type of the
function in which it appears. If the
diagnostic is for a function declaration,
ensure that the return type is not an array
type or a function type. If the diagnostic is
for a return statement, the containing
function is probably declared void and can
contain no expression in its return statement

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-18 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 19 Monday, March 9, 1998 3:23 PM
Illegal return

type; found TYPE

expected TYPE.

Compile
Error

Return statement expression type is not the
same as the return type of the function in
which it appears. Ensure that the type of the
return expression is consistent (assignment
compatible) with the function return type.

Illegal separator

character or illegal

position of separator

character.

Non-Fatal
Run-time Error

Either the separation characters < and > were
not present in the format string, or they were
in the wrong place.

Illegal source filename

specified for #line;

s-char-sequence

expected.

Compile
Error

Only token that can follow the line number
specification in a #line preprocessor
directive is an optional string literal
specifying a source filename. A sequence of
tokens also can follow the #line token if,
after the compiler performs macro expansion
on the source line, the source line conforms
to one of the two allowable forms of #line
preprocessor directives:

#line line-number-digit-sequence

#line line-number-digit-sequence
"filename"

Illegal statement

termination.

Compile
Error

During compilation of a sequence of
statements, the compiler encountered a
token that it expected either to begin a new
statement, begin an else clause of an if
statement, be a statement label, be a case
label, or terminate a compound statement,
such as } . Depending on the context of the
location of where the compiler issued the
diagnostic, ensure that the statement syntax
is correct for the cases listed above.

Illegal type array

of TYPE.

Compile
Error

You attempted to declare an array of
functions. You probably intended to declare
an array of function pointers instead.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-19 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 20 Monday, March 9, 1998 3:23 PM
Illegal type const TYPE. Compile
Error

You used more than one qualifier, such as
const or volatile , in a type specification;
for example, const const int . Do not use
the const and volatile qualifiers more
than once each in the same type.

Illegal type for symbol

'DllMain': TYPE.

Compile
Error

DllMain does not conform to the accepted
prototype.

int__stdcall DllMain
 (HINSTANCE hinstDLL,

 DWORD fdwReason,

 LPVOID lpvReserved);

Illegal type for symbol

'WinMain': TYPE.

Compile
Error

WinMain does not conform to the accepted
prototype.

int__stdcall WinMain
 (HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine,

 int nCmdShow);

Illegal type volatile

TYPE.

Compile
Error

You used more than one qualifier, such as
const or volatile , in a type specification;
for example, const const int . Do not use
the const and volatile qualifiers more
than once each in the same type.

Illegal use of type

name NAME.

Compile
Error

You used a typedef name in the context of a
primary expression. If you intended to use a
type cast, parenthesize the typedef name.
Otherwise you must use a macro name,
enumeration constant, variable name, or
function name in this context.

Illegal value matched to

asterisk.

Non-Fatal
Run-time Error

Integer argument that matches to an asterisk
(*) in the format string has an invalid value
given the context in which it appears.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-20 © National Instruments Corporation

Appendix A Errors and Warnings

.

00ProRef.book : 07AppA.fm Page 21 Monday, March 9, 1998 3:23 PM
Illegal variable

declaration; only static

and extern variable

classes are valid in the

interactive window.

Compile
Error

Change the variable declaration to be either
static or extern .

Import Variables cannot

be used in global

variable

initialization.

Compile
Error

You used a global variable marked as
__import or declspec(dllimport) in
an initializer of another variable.

Include files nested too

deeply.

Compile
Error

Number of nested #include files exceeds
compiler limits. Reduce the number of
nested #include preprocessor directives.

Inconsistent linkage for

NAME previously declared

at POSITION.

Compile
Error

Current declaration of the identifier is
inconsistent with a previous declaration of
the same identifier with regard to linkage.
Ensure that all declarations of the identifier
that you intend to be static do not conflict
with declarations without the static
keyword in the same scope.

Inconsistent type

declarations for

external symbol NAME in

modules FILE1 and FILE2.

Link Error You declared two or more external symbols
with the same name but not the same type.
Check each program file that contains an
external declaration of the symbol for type
consistency.

Initializer exceeds

bit-field width.

Compile
Warning

Number of bits necessary to represent the
initialization value of a bit field exceeds its
declared width. The compiler truncates the
initialization value to fit the bit field. The
initialization value must be smaller or the bit
field declaration must be wider.

Initializer must be

constant.

Compile
Error

Initializer must be an expression that
conforms to the semantics for a constant
expression.

Insufficient number of

arguments to FUNCTION.

Compile
Error

Function expects more arguments than you
passed to it. Check the function declaration
for the number of parameters to the function

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-21 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

e

l

00ProRef.book : 07AppA.fm Page 22 Monday, March 9, 1998 3:23 PM
Insufficient system

memory for Interactive

Window

Link Error There is not enough memory to run the code
in the Interactive Execution window.

Insufficient system

memory for project.

Link Error There is not enough memory to link the
project.

Insufficient user data

memory for project.

Link Error There is not enough memory to link the
project.

Invalid hexadecimal

constant.

Compile
Error

A token the compiler assumes to be a
hexadecimal constant is badly formed.
Ensure that token conforms to the syntax for
hexadecimal constants, especially that a
valid hexadecimal digit follows the 0x or
0X prefix.

Invalid initialization

type; found TYPE

expected TYPE.

Compile
Error

Expression that initializes the object
declaration is type incompatible with the
object. Ensure that the initialization
expression is assignment compatible with
the object type. Ensure that all constituent
values of an aggregate expression match th
corresponding positional types of the
aggregate type, such as member types of a
struct or union type.

Invalid octal constant. Compile
Error

A token the compiler assumes to be an octa
constant is badly formed. Ensure that the
token conforms to syntax for octal constants,
especially that a valid octal digit follows the
leading 0 prefix.

Invalid operand of unary

&; NAME is declared

register.

Compile
Error

It is illegal to take the address (& prefix
operator) of an object you declare to be of
register class. Remove the register
keyword from the object declaration if you
want to apply the address operator to it.

Invalid pointer argument

to library function.

Fatal
Run-time Error

Pointer expression you passed to the library
function is invalid. It is probably the result of
a previous invalid pointer operation.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-22 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 23 Monday, March 9, 1998 3:23 PM
Invalid size for a real. Non-Fatal
Run-time Error

4 and 8 are the only valid sizes that you can
specify with the b modifier for the f (real)
specifier.

Invalid size for an

integer.

Non-Fatal
Run-time Error

1, 2, and 4 are the only valid sizes that you
can specify with the b modifier for the i , d,
x , o, and c modifiers.

Invalid storage class. Compile
Error

extern is the only allowable explicit
storage class specifier for a function
declaration that has block scope.

Invalid struct field

declarations.

Compile
Error

Compiler encountered an invalid token while
processing a struct or union type declaration.
The compiler expected a token that begins a
member type specifier where the type
specifier is one ofvoid , char , short , int ,
long , float , double , signed , unsigned ,
<struct-or-union-specifier >,
<enum-specifier >, or
<typedef-name >.

Invalid type argument

TYPE to sizeof.

Compile
Error

You applied sizeof operator to a function
type or incomplete struct or union type. A
function type has no size, and the size of an
incomplete struct or union type is unknown
before its full declaration.

Invalid type

specification.

Compile
Error

Combination of type specifiers is
incompatible. You can use the type specifier
short only in combination with int . You
can use the type specifier long only in
combination with int and double . You can
use the type specifiers signed and
unsigned only in combination with one
of the basic integer types (char , short ,
int , long).

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-23 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 24 Monday, March 9, 1998 3:23 PM
Invalid union field

declarations.

Compile
Error

Compiler encountered an invalid token while
processing a struct or union type declaration.
The compiler expected a token that begins a
member type specifier where the type
specifier is one of void , char , short , int ,
long , float , double , signed , unsigned ,
<struct-or-union-specifier >,
<enum-specifier >, or
<typedef-name >.

Invalid use of TOKEN. Compile
Error

This error occurs during compilation of a
type specification. The specified TOKEN is
not valid in the context of the type specifier.
Two common errors are use of a storage
class other than register for a parameter
declaration and using the storage class
register for a global object declaration.

l format specifier not

valid in

Fmt/FmtOut/FmtFile.

Non-Fatal
Run-time Error

You can use the l format specifier only in
Scan , ScanOut , and ScanFile .

l modifier is only valid

with d, i, n, o, u, and

x specifiers.

Non-Fatal
Run-time Error

l format specifier is valid only for integer
format specifiers.

L modifier is only valid

with e, f, and g

specifiers.

Non-Fatal
Run-time Error

L modifier, which specifies that the argument
is a long double, can be used only in the
floating point formats.

l modifier is only valid

with e, f, g, d, i, n, o,

u, and x specifiers.

Non-Fatal
Run-time Error

l format specifier is valid only for integer
and real format specifiers.

Left operand of –> has

incompatible type TYPE.

Compile
Error

Left operand of the –> dereference operation
is either not a pointer to struct or union
type, or it is not a pointer type at all.

Left operand of . has

incompatible type TYPE.

Compile
Error

Left operand of the . member selection
operation must be a struct or union type.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-24 © National Instruments Corporation

Appendix A Errors and Warnings

r

t

00ProRef.book : 07AppA.fm Page 25 Monday, March 9, 1998 3:23 PM
Library function error

(STRING == NUMBER).

Non-Fatal
Run-time Error

Library function could not perform its task.
The integer NUMBER is either the function
return value or the value of a global variable
that explains why the function failed. Refer
to the library function reference material for
more information about the error.

Lvalue required. Compile
Error

An lvalue is required in this context. Ensure
that the expression conforms to the
semantics of an lvalue.

Macro expansion too

large.

Compile
Error

Macro expansion has exceeded the compile
implementation size limitation.

Macro parameter must

follow # operator.

Compile
Error

operator requires that a macro parameter
immediately follow it in a macro
replacement list.

Matching push not

encountered or already

popped.

Compile
Error

pack pragma used a named pop that does no
balance with the push of the same name.

Missing { in

initialization of TYPE.

Compile
Error

Initialization of a struct , union , or array
type, is missing a starting { for an aggregate
initialization value.

Missing #endif Compile
Error

#if , #ifdef preprocessor directive must
have a corresponding #endif in the same
source file.

Missing #include file

name; #include expects

"FILE" or <FILE>.

Compile
Error

No include filename follows the #include
preprocessor directive. Ensure that a
filename of the correct form follows
#include or that any macro that follows
#include expands into the correct form for
an include filename.

Missing '. Compile
Error

Termination single quote character ' is
missing from a character or wide character
literal.

Missing CHAR. Compile
Error

Check for unterminated string or character
literal.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-25 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

t

,

r

00ProRef.book : 07AppA.fm Page 26 Monday, March 9, 1998 3:23 PM
Missing argument to

variable argument

function.

Fatal
Run-time Error

Variable argument function requires at least
one argument beyond the last formal
parameter.

Missing array size. Compile
Error

You attempted to define a block scope object
or type that is an array which has an elemen
type that is an incomplete array type, such as
an array with unspecified size. The array
element type must be a complete array type
such as an array type with a known size.

Missing format string

integer.

Non-Fatal
Run-time Error

Integer that corresponds to an asterisk in a
format string is missing. Incorrect ordering
of the arguments can cause this. This intege
must precede the actual argument.

Missing identifier. Compile
Error

Identifier that specifies the object name is
missing from the object declaration. Ensure
that an identifier follows the object type
specifier.

Missing label in goto. Compile
Error

goto statement is missing an identifier label.

Missing parameter name

to function FUNCTION.

Compile
Error

Parameter list of the function definition is
missing an identifier for one of its parameter
declarations. All parameter declarations for
a function definition must include an
identifier except for the special case of a
parameter list consisting of a single
parameter of type void , in which there must
not be an identifier.

Missing parameter type. Compile
Error

Type specifier is missing from a parameter
declaration in a new-style (prototype)
function declaration. Ensure that the
function declaration is not mixing old-style
parameter declarations with new-style
(prototype) declarations.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-26 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 27 Monday, March 9, 1998 3:23 PM
Missing prototype. Compile
Error

Function declaration or call is for a function
without prototype declaration information.
The compiler issues the diagnostic if the
Require Function Prototypes compiler
option is enabled.

Missing return value. Fatal
Run-time Error

Function does not return a value, although
you declared it with a return type. If you did
not intend for the function to return a value,
you must declare it as a void function.
Otherwise, you must use a return
statement to return a value.

Missing return value. Compile
Warning

Non-void function does not return a value.
Add a return statement with an expression of
the function return type. The compiler issues
the diagnostic if the Require Return Value
for Non-void Functions compiler option is
enabled.

Missing right
bracket (]).

Fatal
Run-time Error

Format string has mismatched brackets.

Missing struct tag. Compile
Error

Tag name is missing from an incomplete
struct or union declaration.

Missing terminating null

in string argument.

Fatal
Run-time Error

Library function expects a string argument,
but the argument you passed points to an
array of characters that is not
null-terminated.

Missing union tag. Compile
Error

Tag name is missing from an incomplete
struct or union declaration.

Multiply defined symbol

NAME in modules FILE1

and FILE2.

Link Error The files being linked contain more than one
definition for NAME.

Naked functions are not

supported.

Compile
Error

LabWindows/CVI does not work with the
naked keyword.

NAME is a predefined

macro and cannot be the

subject of an #undef.

Compile
Error

Make sure that the name you specify for the
#undef preprocessor directive is not that of
a predefined macro.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-27 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 28 Monday, March 9, 1998 3:23 PM
No data relocation

section found for

external module: FILE.

Link Error External object module does not contain the
relocation information necessary to link it in
with the rest of the project. You cannot load
an executable as an object module.

No data section

found for external

module: FILE.

Link Error External object module does not contain the
initialized data necessary to link it in with
the rest of the project. Ensure that you built
the external object file correctly.

No pack settings

currently pushed.

Compile
Error

pack pragma used a pop when there were no
pushes.

No symbol table

found for external

module: FILE.

Link Error External object module does not contain the
symbol table information necessary to link it
in with the rest of the project. Ensure that
you built the external object file correctly.

No text relocation

section found for

external module: FILE.

Link Error External object module does not contain the
relocation information necessary to link it in
with the rest of the project. You cannot load
a linked executable as an object module.

No text section

found for external

module: FILE.

Link Error External object module does not contain the
initialized instruction data necessary to link
it in with the rest of the project. Ensure that
you built the external object file correctly.

Non-terminated

address list.

Fatal
Run-time Error

You attempted to pass an address list array
that you did not terminate with –1 to a
GPIB-488.2 function that expects the array
to terminate with –1.

Not enough parameters. Non-Fatal
Run-time Error

Number of arguments the format string
expects is more than the number of
arguments you passed in.

Not enough space for

casting expression

to TYPE.

Non-Fatal
Run-time Error

Block of memory you obtained from
malloc or calloc is not large enough for a
single object of type TYPE and cannot be cast
to that type.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-28 © National Instruments Corporation

Appendix A Errors and Warnings

t

00ProRef.book : 07AppA.fm Page 29 Monday, March 9, 1998 3:23 PM
Null Pointer. Fatal
Run-time Error

Pointer expression you passed to the library
function has the value NULL, which is not a
valid value for the function.

Null pointer argument to

library function.

Fatal
Run-time Error

Pointer expression you passed to the library
function has the value NULL, which is not a
valid value for the function.

NUMBER is an illegal

array size.

Compile
Error

Make sure that the size of the array
declaration is > 0.

NUMBER is an illegal bit

field size.

Compile
Error

Make sure that the size you specified for the
bit field is ≥ 0 and ≤ 32.

NUMBER line(s)

truncated. File set to

read-only.

Compile
Error

Occurs when reading in source or include
file. Lines are limited to 254 characters,
where tabs count as 1. Use the editor in
which you created the file to split the line.

Number of arguments

exceed the maximum

supported.

Non-Fatal
Run-time Error

Number of arguments exceeds the maximum
that the formatting functions support.

Number of points is too

large for current

waveform buffer.

Fatal
Run-time Error

Message appears when the
numberofPoints parameter of a data
acquisition waveform generation function is
larger than the numberofPoints parameter
to the function which set up the waveform
buffer.

Object module contains

unsupported FAR

pointers.

Object Load
Error

External object module contains FAR
pointers, which you cannot implement in
LabWindows/CVI.

One of the arguments to

FUNCTION has an

unsupported size.

Glue Code
Generation
Error

One of the function arguments has a type tha
the LabWindows/CVI glue code generation
and DLL loader do not support.

Only object modules

produced by WATCOM C 386

fully supported.

Link Error External object module contains OMF
records that LabWindows/CVI does not
recognize or support. Ensure that the object
file was compiled with a Watcom C 386
compiler with the recommended options.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-29 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 30 Monday, March 9, 1998 3:23 PM
Operands of ‘=‘ have

incompatible calling

conventions.

Compile
Error

Function pointer is assigned an expression
that does not match its calling convention.

Operands of [one from

set of binary operators]

have illegal types TYPE

and TYPE.

Compile
Error

Types of the two operands to the
binary operator are illegal according to the
ANSI C standard.

Operands of [one from

set of binary operators]

have incompatible types.

Compile
Error

Types of the two operands to the binary
operator are not compatible according to the
ANSI C standard.

Operand of unary

OPERATOR has illegal

type TYPE.

Compile
Error

Type of the operand to the unary operator is
not valid.

Out-of-bounds pointer

argument (before start

of array).

Fatal
Run-time Error

Pointer expression you passed to the library
function is invalid because it refers to a
location that is before the start of an array.
The expression is probably the result of
previous illegal pointer arithmetic.

Out-of-bounds pointer

argument (past end of

array).

Fatal
Run-time Error

Pointer expression you passed to the library
function is invalid because it refers to a
location past the end of an array. The
expression is probably the result of previous
illegal pointer arithmetic.

Out-of-bounds pointer

arithmetic: NUMBER bytes

(NUMBER elements) before

start of array.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because the resulting value refers to a
location before the start of an array. The
error message shows the number of bytes
and number of array elements before the
beginning of the array.

Out-of-bounds pointer

arithmetic: NUMBER bytes

(NUMBER elements) past

end of array.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because the resulting value refers to a
location past the end of an array. The error
message shows the number of bytes and
number of array elements past the end.

Out of memory for user

protection information.

Fatal
Run-time Error

Could not allocate memory required to store
user protection information.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-30 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 31 Monday, March 9, 1998 3:23 PM
Overflow in constant

CONSTANT.

Compile
Warning

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow in constant

expression.

Compile
Warning

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow in floating

constant CONSTANT.

Compile
Warning

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow in hexadecimal

escape sequence.

Compile
Warning

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow in octal escape

sequence.

Compile
Warning

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow in value for

enumeration constant

CONSTANT.

Compile
Error

Value of a constant or constant expression
exceeds the limits of the type. Ensure that the
value does not exceed the maximum value
for the expression type.

Overflow occurred during

the conversion of the

int. The absolute value

is too big for the size.

Non-Fatal
Run-time Error

Number was too large to store in the integer
of the specified size.

Overflow occurred during

the conversion of the

float. The number is too

big for type float.

Non-Fatal
Run-time Error

Number was too large to store in a 4-byte
real.

Overflow occurred during

the conversion of the

int. The signed value is

too big for the size.

Non-Fatal
Run-time Error

Number was too large to store in the integer
of the specified size.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-31 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

t

s

s

 a

s

00ProRef.book : 07AppA.fm Page 32 Monday, March 9, 1998 3:23 PM
Pack pragma valid values

are 1, 2, 4, 8, and 16.

Compile
Error

pack pragma alignment value parameter
must be 1, 2, 4, 8, or 16.

Parameter type

incompatible with format

specifier.

Non-Fatal
Run-time Error

Parameter type is not compatible with the
type that the format string expects.
An argument is either missing or of the
wrong type.

Parameter type mismatch:

expecting TYPE but

found TYPE.

Non-Fatal
Run-time Error

Parameter type does not match the type tha
the format string expects. The arguments
might not be in the right order, or an
argument might be missing.

Pointer arithmetic

involving invalid

pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contain
an invalid pointer.

Pointer arithmetic

involving null pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contain
the value NULL.

Pointer arithmetic

involving pointer to

freed memory.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contains
pointer to dynamic memory that you
deallocated with the free function. Once
memory is free, all pointers into that block of
memory are invalid.

Pointer arithmetic

involving pointer to

function.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions is a
function pointer.

Pointer arithmetic

involving uninitialized

pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contain
an uninitialized pointer. It is probably an
uninitialized local variable.

Pointer comparison

involving address of

nonarray object.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because it does not
point into an array. Both expressions in
pointer comparisons must point into the
same object.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-32 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 33 Monday, March 9, 1998 3:23 PM
Pointer is invalid. Non-Fatal
Run-time Error

Pointer argument to the function contains an
invalid address.

Pointer points to freed

memory.

Non-Fatal
Run-time Error

Pointer argument to the function points to
memory that you already freed.

Pointer subtraction

involving address of

nonarray object.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because it does not
point into an array. Both expressions in
pointer subtractions must point into the same
object.

Pointer to a local is an

illegal return value.

Compile
Error

Value returned from the function is a pointer
to a parameter or local variable. Because the
lifetime of a parameter or local variable ends
when you return from the function, any
pointer to such an object is invalid.

Pointer to a parameter

is an illegal return

value.

Compile
Error

Value returned from the function is a pointer
to a parameter or local variable. Because the
lifetime of a parameter or local variable ends
when you return from the function, any
pointer to such an object is invalid.

Pointer to free memory

passed to library

function.

Fatal
Run-time Error

Pointer expression you passed to the library
function is invalid because it refers to a
location in dynamic memory that you
deallocated with the function free . Once
memory is free, all pointers into that block of
memory are invalid.

pragma pack(pop...) does

not set alignment. Use

separate pack pragma.

Compile
Warning

You used a pragma pop with an alignment
value. Use separate pack pragmas for
popping and setting the alignment value.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-33 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

e

00ProRef.book : 07AppA.fm Page 34 Monday, March 9, 1998 3:23 PM
Project not linked. Link Warning This error occurs when the compiler reports
one or more link errors in the Interactive
Execution window and the project is not in a
linked state. This warning provides a
possible explanation for the link errors. The
Interactive Execution window does not link
to the project unless the project is in a linked
state. If you are referencing project symbols
from the Interactive Execution window, use
the Build Project command from the Build
menu to compile and link the project first.

Qualified function type

ignored.

Compile
Warning

Any qualification of a function declaration is
extraneous but harmless.

Read error. Link Error Error has occurred while attempting to read
a file. Ensure that the file has access
permission and that it is in the correct
format.

Redeclaration of ‘%s’

with different calling

convention, previously

declared at %w.

Compile
Error

Function has been redeclared with a different
calling convention.

Redeclaration of macro

parameter NAME.

Compile
Error

Parameter name has already been used onc
by the macro. Choose another parameter
name.

Redeclaration of NAME. Compile
Error

Declared name conflicts with a previous
declaration in the same scope and name
space. You have already used the name in
this scope. Choose another name for this
declaration.

Redeclaration of NAME

previously declared at

POSITION.

Compile
Error

Declared name conflicts with a previous
declaration in the same scope and name
space. You have already used the name in
this scope. Choose another name for this
declaration.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-34 © National Instruments Corporation

Appendix A Errors and Warnings

t

00ProRef.book : 07AppA.fm Page 35 Monday, March 9, 1998 3:23 PM
Redefinition of label

NAME previously defined

at POSITION.

Compile
Error

You already used the statement label in this
function. A statement label must be unique
within the function in which you use it.

Redefinition of

macro NAME.

Compile
Error

Macro has already been defined with a
replacement list different from the current
definition. The same macro definition for a
name may appear in the same file more than
once as long both definitions agree in name
and number of parameters and their
replacement lists are identical.

Redefinition of NAME

previously defined at

POSITION.

Compile
Error

You have already defined the object or
function in the current scope. Eliminate one
of the two definitions.

Reference parameter

expected.

Non-Fatal
Run-time Error

Function expected a pointer but you passed i
a scalar.

Register declaration

ignored for TYPE NAME.

Compile
Warning

register storage class conflicts with the
semantics of the type declared for the object.
If you declared the object to be of an array,
struct , or union type, or you qualified it
as volatile , remove the register
keyword from the declaration.

Register declaration

ignored for TYPE

parameter.

Compile
Warning

register storage class conflicts with the
semantics of the type you declared for the
parameter prototype. If you declared the
object to be of struct or union type, or
you qualified it as volatile , remove the
register keyword from the prototype
parameter declaration.

Repeat value not valid

with s/l format

specifiers.

Non-Fatal
Run-time Error

You cannot use a repeat value with the s and
l format specifiers.

Result of unsigned

comparison is constant.

Compile
Warning

Result of <UNSIGNED INTEGER
 always evaluates

to 1.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

EXPRESSION > 0≥
© National Instruments Corporation A-35 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 36 Monday, March 9, 1998 3:23 PM
Segment must be of

class CODE, DATA, BSS,

or STACK: segment

name NAME.

Load Error External object module contains an
unknown segment class. Object modules
must not contain any specially-named
segments.

Segment must be USE32:

segment name NAME.

Link Error External object module you loaded contains
unsupported 16-bit segments.
LabWindows/CVI supports only 32-bit
object modules. Ensure that the external
object module was compiled with a 32-bit
compiler.

'signed' type mismatch

between TYPE and TYPE.

Compile
Warning

This warning is issued when the signs of the
lvalue and rvalue expressions in a pointer
assignment operation do not agree. Both
lvalue and rvalue are pointers to integer
types but they point to integer types of
differing signs, which might cause problems
if you later dereference the lvalue. This
diagnostic is issued if you select the Enable
Signed/Unsigned Pointer Mismatch
Warning compiler option.

Simple/Array conflict

with format specifier.

Non-Fatal
Run-time Error

Array you passed to the function matches to
a format specifier for a scalar, or a scalar you
passed to the function matches to a format
specifier for an array.

Size of array of TYPE

exceeds SIZE bytes.

Compile
Error

Size of the array or struct/union type exceeds
the compiler limitation of INT_MAX bytes.

Size of TYPE exceeds

SIZE bytes.

Compile
Error

Size of the array or struct/union type exceeds
the compiler limitation of INT_MAXbytes.

sizeof applied to a bit

field.

Compile
Error

Do not use the sizeof() operation on a
bit-field.

Specified width is too

small to read the

number.

Non-Fatal
Run-time Error

Width you specified for a format specifier
was not large enough to contain a complete
number. Example: you specify a width of 2
for a float, and the number is –.02 ; the
negative sign and decimal point do not
constitute a valid number.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-36 © National Instruments Corporation

Appendix A Errors and Warnings

.

00ProRef.book : 07AppA.fm Page 37 Monday, March 9, 1998 3:23 PM
Stack Overflow. Fatal
Run-time Error

Program exceeds the stack limit. Change the
size of the stack in the Run Options dialog
box, if you think that the code is executing
correctly. Otherwise, ensure that the
program does not contain any infinite
recursion.

‘struct NAME’ declared

inside parameter list

has scope only for this

declaration.

Compile
Warning

Structure declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You must declare the structure type
before you declare function types that use it

Structures containing

unspecified size array

fields must contain

other fields.

Compile
Error

Structures that contain arrays with
unspecified size must contain at least
one other non-zero size member.
LabWindows/CVI supports these types
of structures as an extension to the
ANSI C standard.

Subtraction involving

invalid pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid. It is probably the result
of a previous invalid pointer operation.

Subtraction involving

null pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction has the value NULL. Both
expressions in pointer subtractions must
point into the same array object.

Subtraction involving

uninitialized pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because you did not
initialize it.

Subtraction of pointers

to different objects.

Non-Fatal
Run-time Error

Pointer expressions in the subtraction point
to two distinct objects. Both expressions in
pointer subtractions must point into the same
array object.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-37 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

s

00ProRef.book : 07AppA.fm Page 38 Monday, March 9, 1998 3:23 PM
Subtraction of pointers

to freed memory.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because it refers to a
location in dynamic memory that you
deallocated with the function free . Once
memory is free, all pointers into that block of
memory are invalid.

Switch statement with

no cases.

Compile
Warning

Switch statement contains no case or
default label.

Symbol NAME defined

in modules FILE and

FILE. In Borland

mode, multiple modules

must not contain

uninitialized

definitions of the

same global variable.

Borland creates a

separate variable

for each definition.

LabWindows/CVI and other

linkers resolve all

definitions to the same

variable. If you want

separate variables, use

different names or the

"static" keyword. If

you want one variable,

change all definitions

except one to "extern"

declarations.

Link Error In Borland mode, multiple modules must not
contain uninitialized definitions of the same
global variable. Borland creates a separate
variable for each definition.
LabWindows/CVI and other linkers resolve
all definitions to the same variable. If you
want separate variables, use different name
or the “static” keyword. If you want one
variable, change all definitions except one to
“extern” declarations.

Symbol NAME exported

from header FILE not

found in DLL.

DLL Link Error
or Import
Library
Creation Error.

When you used the Include File method for
specifying the symbols to export from a
DLL, one of the symbols you declared in the
include file was not in the DLL project. Or,
when you created import libraries from an
include file and a DLL, one of the symbols
you declared in the include file was not in
the DLL.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-38 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 39 Monday, March 9, 1998 3:23 PM
Syntax error; found

TOKEN1 expecting TOKEN2.

Compile
Error

Syntax error occurred because the compiler
found TOKEN1 instead of TOKEN2.

The __cdecl calling

convention is not

supported with functions

returning floats,

doubles, or structures

in WATCOM Compatibility

Mode.

Compile
Error

Function with an explicit __cdecl qualifier
returns a double , float or structure, and
your current compatible compiler is
Watcom. Either remove the qualifier or
change the function.

The callback function,

NAME, differs only by a

leading underscore from

another function or

variable. Change one of

the names for proper

linking.

Non-Fatal
Run-time Error

When trying to match a callback name you
specified in a .uir file to the callback
function, the compiler found two symbols
that are the same except for a leading
underscore. Resolve this ambiguity by
changing one of the names.

Thread data is not

supported.

Compile
Error

You cannot implement thread-local storage
in LabWindows/CVI.

Too many arguments to

FUNCTION.

Compile
Error

Declaration for function FUNCTION contains
fewer parameters than the number of
arguments you passed in this function call.

Too many arguments to

variable argument

function.

Non-Fatal
Run-time Error

You passed more arguments to the variable
argument function than it expected. The
extra arguments do not affect the function
call in any way.

Too many function

parameters.

Compile
Error

Number of parameter declarations exceeds
compiler limitations. Declare the function
with fewer parameters.

Too many initializers. Compile
Error

Size of the initializer exceeds the size of the
object. Ensure that the initializer matches the
number/size of the object type.

Too many macro

parameters.

Compile
Error

Number of parameter declarations exceeds
compiler limitations. Declare the macro with
fewer parameters.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-39 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 40 Monday, March 9, 1998 3:23 PM
Too many parameters. Non-Fatal
Run-time Error

Number of parameters you passed to a
function exceed the number of parameters
the format string expects.

Type error in argument

%d to %s, calling

convention mismatch.

Compile
Error

Function or function pointer you passed to a
function does not have the correct calling
convention.

Type error in argument

NUMBER to NAME; TYPE is

illegal.

Compile
Error

Argument you passed is an illegal array type
or an incomplete type of which the size is
unknown. Ensure that the argument is of a
complete type.

Type error in argument

NUMBER to NAME; found

TYPE expected TYPE.

Compile
Error

You passed an argument that is not type
compatible with the prototype declaration
for the parameter in that position. Ensure
that the actual argument is type compatible
with the parameter declaration.

Type error:

pointer expected.

Compile
Error

Expression you dereferenced with the '* ',
'-> ' or '[] ' operator does not have pointer
type.

TYPE is an illegal bit

field type.

Compile
Error

Only int and unsigned types are valid for
bit field declarations; ensure that you use one
of these types.

TYPE used as an lvalue. Compile
Warning

Type that cannot be modified is used as the
target of an assignment. This was probably
caused by an lvalue that is a dereference of
an object declared as (void *).

Unclosed comment. Compile
Error

Comment is missing the closing
*/ delimiter.

Undeclared identifier

NAME.

Compile
Error

You did not previously declare NAME. You
must declare all names before use. Ensure
that you did not conditionally exclude NAME
from compilation.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-40 © National Instruments Corporation

Appendix A Errors and Warnings

el

e

00ProRef.book : 07AppA.fm Page 41 Monday, March 9, 1998 3:23 PM
Undefined label NAME. Compile
Error

You used the label NAME as the target of a
goto statement in the function but it never
appears as a statement label. Ensure the lab
appears in the same function as the goto
statements of which it is a target. Non-local
goto statements are illegal.

Undefined size for

TYPE NAME.

Compile
Error

You have defined an object with an
incomplete type. Because the size of an
incomplete type is unknown, storage cannot
be allocated for the object.

Undefined size for

field TYPE.

Compile
Error

Member (field) declaration has no size for
the declared type. You probably declared the
member with an empty struct or union
type declaration.

Undefined size for field

TYPE NAME.

Compile
Error

Member (field) declaration has no size for
the declared type. You probably declared the
member with an empty struct or union
type declaration.

Undefined size for

parameter TYPE NAME.

Compile
Error

You declared a parameter with an
incomplete type. Because the size of an
incomplete type is unknown, storage cannot
be allocated for the object.

Undefined size for

static TYPE NAME.

Compile
Error

You declared a static object with an
incomplete type or without an initialization
expression from which the compiler can
calculate a size for the type. Because the siz
of an incomplete type is unknown, you
cannot allocate storage for the object.

Undefined static

TYPE NAME.

Compile
Warning or
Error

You declared the static function but never
defined it. Because a static function is
only visible within the file in which you
declared it, you must define it at some point
within the file in order to use it. If you called
the function anywhere in the file, this
diagnostic is an error. Otherwise it is a
warning.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-41 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

.

00ProRef.book : 07AppA.fm Page 42 Monday, March 9, 1998 3:23 PM
Undefined symbol NAME. Link Error You used a variable or function in the project
but did not define it anywhere.

Unexpected #elif;

#endif expected.

Compile
Error

Compiler encountered an #else
preprocessor directive immediately prior to
this #elif at the same level of conditional
inclusion. Ensure that the conditional
preprocessor #include directives at this
level are in the proper order.

Unexpected #elif;

#if not seen.

Compile
Error

Compiler encountered an #elif
preprocessor directive but it has not yet seen
a beginning #if , #ifdef , or ifndef at
this level.

Unexpected #else;

#endif expected.

Compile
Error

Compiler encountered an #else
preprocessor directive immediately
following a prior #else at the same level of
conditional inclusion. Ensure that the
conditional preprocessor #include
directives at this level are in the proper order

Unexpected #else;

#if not seen.

Compile
Error

Compiler encountered an #else
preprocessor directive, but it has not yet seen
a beginning #if , #ifdef , or ifndef at
this level.

Unexpected #endif;

no matching #if, #ifdef,

or #ifndef.

Compile
Error

Compiler encountered an #endif
preprocessor directive but has not yet seen a
beginning #if, #ifdef , or ifndef at
this level.

Unexpected EOF. Load Error LabWindows/CVI encountered an
unexpected End Of File (EOF) condition
when loading an external object module.
Ensure that the object file has not been
truncated.

Unexpected EOF;

TOKEN expected.

Compile
Error

The compiler encountered an End Of File
(EOF) condition while parsing a syntactic
construct. Ensure that syntactic structure is
complete, such as matching parenthesis and
matching braces.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-42 © National Instruments Corporation

Appendix A Errors and Warnings

.

,

00ProRef.book : 07AppA.fm Page 43 Monday, March 9, 1998 3:23 PM
Unexpected end of format

string.

Non-Fatal
Run-time Error

Format string you passed to the function is
not complete. It is missing a source or
destination format specifier, or contains an
incomplete format specifier.

Unexpected token. Compile
Error

Compiler encountered an unexpected token
while processing a #define preprocessor
directive. Check for missing) in your macro
parameter lists.

Unexpected trailing

tokens on directive line

ignored.

Compile
Warning

Preprocessor line contains harmless trailing
tokens that the compiler ignored.

Uninitialized pointer. Non-Fatal
Run-time Error

You never assigned a value to the pointer
argument you passed to a function.

Uninitialized pointer

argument to library

function.

Fatal
Run-time Error

Pointer expression you passed to the library
function is invalid because you did not
initialize it. It is either a local variable or an
object in dynamic memory that you did not
initialize.

Uninitialized string. Non-Fatal
Run-time Error

You never assigned a value to the pointer
argument you passed to the library function,
or it is NULL.

'union NAME' declared

inside parameter list

has scope only for this

declaration.

Compile
Warning

Union declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You should declare the union type
before you declare function types that use it

Unknown enumeration

NAME.

Compile
Error

NAME is an undeclared enumeration type.

Unknown field NAME

of TYPE.

Compile
Error

Member selection or dereference has
attempted to access an undeclared member
(field) name of a struct , or union type.
Ensure that the member is declared for the
struct or union type you select or
dereference.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-43 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

m

m

r

00ProRef.book : 07AppA.fm Page 44 Monday, March 9, 1998 3:23 PM
Unknown modifier. Non-Fatal
Run-time Error

One of the modifiers in a format specifier is
not valid.

Unknown or unsupported

OMF record at position

NUMBER: OMF record type

NUMBER.

Load Error LabWindows/CVI encountered an unknown
OMF record while loading an external object
module. Ensure that the external object
module was compiled properly.

Unknown size of

type TYPE.

Compile
Error

You performed pointer arithmetic on
operand(s) that are pointers to types of
unknown size. The types are probably
incomplete types or pointer to function
types. Ensure that the pointer types point to
fully declared types and are not pointers to
functions.

Unknown specifier. Non-Fatal
Run-time Error

Specifier in the format specifier is not valid.

Unnamed pop matching

named push.

Compile
Warning

pack pragma used an unnamed pop that
balances a name push.

Unrecognized character

escape sequence.

Compile
Warning

Character escape sequence does not confor
to any known character escape sequence,
octal escape sequence, or hexadecimal
escape sequence.

Unrecognized character

escape sequence CHAR.

Compile
Warning

Character escape sequence does not confor
to any known character escape sequence,
octal escape sequence, or hexadecimal
escape sequence.

Unrecognized

declaration.

Compile
Error

Declaration is unrecognizable. Check the
declaration syntax for the function, object, or
type you want to use.

Unrecognized

preprocessor directive.

Compile
Error

character begins an unknown preprocesso
directive. Check the spelling of the
preprocessor directive.

Unrecognized statement. Compile
Error

Statement syntax is unrecognizable. Check
the statement syntax for the type of
statement you want to use.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-44 © National Instruments Corporation

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 45 Monday, March 9, 1998 3:23 PM
Unsigned operand of

unary –.

Compile
Warning

You performed a nonsensical unary negation
operation on an unsigned type. A negation
operation on an unsigned type is not
effective.

Unsupported segment

combination type NUMBER:

segment name NAME.

Load Error LabWindows/CVI encountered a bad
segment while loading an external object
module. Ensure that the external object
module was compiled properly.

Use of keyword

'__import' contradicts

previous use of keyword

'__export' at POSITION.

Compile
Error

Use of a keyword in a variable definition
contradicts a previous definition, for
example:
int __export x;

int __import x=0;

Use of keyword

'__export' contradicts

previous use of keyword

'__import' at POSITION.

Compile
Error

Use of a keyword in a variable definition
contradicts a previous definition, for
example:
int __import x;

int __export x=0;

Use of keyword

'__declspec(dllimport)'

 contradicts previous

use of keyword

'__declspec(dllexport)'

 at POSITION.

Compile
Error

Use of a keyword in a variable definition
contradicts a previous definition, for
example:
int __declspec(dllexport) x;

int __declspec(dllimport) x=0;

Use of keyword

'__declspec(dllexport)'

 contradicts previous

use of keyword

'__declspec(dllimport)'

 at POSITION.

Compile
Error

Use of a keyword in a variable definition
contradicts a previous definition, for
example:
int __declspec(dllimport) x;

int __declspec(dllexport) x=0;

Value parameter

expected.

Non-Fatal
Run-time Error

You passed a pointer for a format specifier
that requires a scalar value.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
© National Instruments Corporation A-45 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

00ProRef.book : 07AppA.fm Page 46 Monday, March 9, 1998 3:23 PM
Variables defined as

DLL imports cannot be

defined with an initial

value.

Compile
Error

You assigned an initial value to a variable
defined as a DLL import, for example:
int __import i = 0;

You must initialize the variable in a separate
assignment statement.

VXI address must be a

multiple of 2 for word

transfer.

Fatal
Run-time Error

You attempted to perform VXI word transfer
beginning at an odd address.

VXI address must be a

multiple of 4 for

longword transfer.

Fatal
Run-time Error

You attempted to perform a VXI longword
transfer beginning at an address that is not a
multiple of 4.

w modifier not valid

with l format specifier.

Non-Fatal
Run-time Error

You cannot use the w modifier with the
l format specifier.

Warning: Import

libraries other than the

one for the current

compatibility mode may

not work for symbols

exported from an object

file. It is recommended

that you export using

header files instead.

DLL Link
Warning

When creating a DLL using the Symbols
Marked for Export method for specifying
exported symbols, one of the modules was
an object or library file. LabWindows/CVI
does not have sufficient information to
ensure that the import libraries it generates
for all four compatible external compilers
will have the correct names of the symbols in
that module.

WatchPoint: module name

is not valid.

Watchpoint
Error

Module name you specified in the watch
point is not present in the project or in any of
the loaded instrument drivers.

z modifier only valid if

rep is present.

Non-Fatal
Run-time Error

z modifier cannot be used if the format
specifier is not for an array.

z modifier required to

match string parameter.

Non-Fatal
Run-time Error

If you want to treat a character string as an
array of another type, you must use the z
modifier. This error also can occur if the
order of the arguments is incorrect, or if an
argument is missing.

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
LabWindows/CVI Programmer Reference Manual A-46 © National Instruments Corporation

© National Instruments Corporation B-1 LabWindows/CVI Programmer

00ProRef.book : 09CCApx.fm Page 1 Monday, March 9, 1998 3:23 PM
B

ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use
u can

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
Reference Manual

 wide
t

l at the
 we can

al
act

00ProRef.book : 09CCApx.fm Page 2 Monday, March 9, 1998 3:23 PM
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678
LabWindows/CVI Programmer Reference Manual B-2 © National Instruments Corporation

nd use
orm

,

__

00ProRef.book : 09CCApx.fm Page 3 Monday, March 9, 1998 3:23 PM
Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) ______________________________________

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed ___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

h item.
, and
ore
your

00ProRef.book : 09CCApx.fm Page 5 Monday, March 9, 1998 3:23 PM
LabWindows/CVI Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of eac
Complete a new copy of this form each time you revise your software or hardware configuration
use this form as a reference for your current configuration. Completing this form accurately bef
contacting National Instruments for technical support helps our applications engineers answer
questions more efficiently.

National Instruments Products
Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware __

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

ducts.

00ProRef.book : 09CCApx.fm Page 7 Monday, March 9, 1998 3:23 PM
Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: LabWindows/CVI Programmer Reference Manual

Edition Date: February 1998

Part Number: 320685D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

00ProRef.book : 10gloss.fm Page 1 Monday, March 9, 1998 3:23 PM
Glossary

y

 the

 of

.

Prefix Meaning Value

m- milli- 10–3

µ- micro- 10–6

n- nano- 10–9

A

active window The window user input affects at a given moment. The title of an
active window is highlighted.

API Application Programming Interface. A set of functions exported b
a library.

Array Display A mechanism for viewing and editing numeric arrays.

auto-exclusion A mechanism that prevents pre-existing lines from executing in
Interactive Execution window.

B

binary control A function panel control that resembles a physical on/off switch
and can produce one of two values depending upon the position
the switch.

breakpoint An interruption in the execution of a program.

Breakpoint A function that interrupts the execution of a program.

Breakpoint command A specific command that interrupts the execution of a program
© National Instruments Corporation G-1 LabWindows/CVI Programmer Reference Manual

Glossary

nts

e

t is

he

ow

ot
t

n

rrent

00ProRef.book : 10gloss.fm Page 2 Monday, March 9, 1998 3:23 PM
C

cdecl A function calling convention in which function calls pass argume
from right to left, and the caller restores the stack position after
the call.

check box A dialog box item that allows you to toggle between two possibl
options.

clipboard A temporary storage area LabWindows/CVI uses to hold text tha
cut, copied, or deleted from a work area.

control An input and output device that appears on a function panel for
specifying function parameters and displaying function results.

cursor The flashing rectangle that shows where you can enter text on t
screen.

cursor location indicator An element of the LabWindows/CVI screen that specifies the r
and column position of the cursor in the window.

D

default command The action that takes place when you press <Enter> and did n
specifically select a command. A double outline indicates defaul
command buttons in dialog boxes.

dialog box A prompt mechanism in which you specify additional informatio
necessary to complete a command.

DLL Dynamic Link Library. A file that contains a collection of functions
that multiple applications (.exe files) can use.

E

entry mode indicator An element of the LabWindows/CVI screen that indicates the cu
text entry mode as either insert or overwrite.

excluded code Code that LabWindows/CVI ignores during compilation and
execution. LabWindows/CVI displays excluded lines of code in a
different color than included lines of code.
LabWindows/CVI Programmer Reference Manual G-2 © National Instruments Corporation

Glossary

n

s in
te

n
s to

ear

file.

 that
ate

les

rn
t be

rated

00ProRef.book : 10gloss.fm Page 3 Monday, March 9, 1998 3:23 PM
F

.fp file A file that contains information about the function tree and functio
panels of an instrument module.

function panel A screen-oriented user interface to the LabWindows/CVI librarie
which you can interactively execute library functions and genera
code for inclusion in a program.

Function Panel Editor window The window in which you build a function panel. The
LabWindows/CVI Instrument Driver Developers Guide.

function panel window The window in which you can use function panels.

function tree The hierarchical structure in which the functions in a library or a
instrument driver are grouped. The function tree simplifies acces
a library or instrument driver by presenting functions organized
according to the operation they perform, as opposed to a single lin
listing of all available functions.

Function Tree Editor window The window in which you build the skeleton of a function panel
It is described in the LabWindows/CVI Instrument Driver
Developers Guide.

G

Generated Code box A small box located at the bottom of the function panel screen
displays the function call code that corresponds to the current st
of the function panel controls.

global control A function panel control that displays the contents of global variab
in a library function. Global controls allow you to monitor global
variables in a function that the function does not specifically retu
as results by the function. These are read-only controls that canno
altered by the user, and do not contribute a parameter to the gene
code.

glue code Special code that provides the interface between 32-bit
LabWindows/CVI applications and 16-bit DLLs.

H

hex Hexadecimal.
© National Instruments Corporation G-3 LabWindows/CVI Programmer Reference Manual

Glossary

I

 causes

(!).

e
ith
ed.

t the
as

 and

ver

e

the

s of

00ProRef.book : 10gloss.fm Page 4 Monday, March 9, 1998 3:23 PM
highlight The way in which input focus is displayed on a LabWindows/CV
screen; to move the input focus onto an item.

I

immediate action command A menu bar item that has no menu items associated with it and
a command to execute immediately when you select it. An
immediate action command is suffixed with an exclamation point

input control A function panel control that accepts a value you type in from th
keyboard. An input control can have a default value associated w
it. This value appears in the control when the panel is first display

input focus Displayed on the screen as a highlight on an item, signifying tha
item is active. User input affects the item in the dialog box that h
the input focus.

instrument driver A set of high-level functions for controlling an instrument. It
encapsulates many low-level operations, such as data formatting
GPIB, RS-232, and VXI communication, into intuitive, high-level
functions. An instrument driver can pertain to one particular
instrument or to a group of related instruments. An instrument dri
consists of a program and a set of function panels. The program
contains the code for the high-level functions. Associated with th
instrument program is an include file that declares the high-level
functions you can call, the global variables you can access, and
defined constants you can use.

Interactive Execution window A LabWindows/CVI work area in which you can execute section
code without creating an entire program.
LabWindows/CVI Programmer Reference Manual G-4 © National Instruments Corporation

Glossary

d
ay
e

t of

ou
, an
ion,

e

tack

e
ixed

00ProRef.book : 10gloss.fm Page 5 Monday, March 9, 1998 3:23 PM
L

list box A dialog box item that displays a list of possible choices.

lvalue A C expression that refers to an object that can be examined an
modified. The name lvalue comes from the fact that only lvalues m
appear on the left side of an assignment. Examples of lvalues ar
variables, parameters, array element references such as a[i] ,
struct element references such as s->name or s.name , and
pointer dereferences such as *ptr . Expressions that are not lvalues
are called rvalues.

M

MB Megabytes of memory.

menu An area accessible from the command bar that displays a subse
the possible command choices.

O

output control A function panel control that displays a value that the function y
execute generates. An output control parameter must be a string
array, or a reference parameter of type integer, long, single-precis
or double-precision.

ordinal number A numeric value that corresponds to a function within a DLL. Th
linker that creates the DLL arbitrarily defines it, or it may be
specified in the .def file when the DLL is created.

P

PASCAL A Windows 3.1 function calling convention in which function
arguments are passed left to right, and the function restores the s
pointer before it returns.

Project window A window that contains a list of files your application uses.

prompt command A command that requires additional information before it can b
executed; a prompt command appears on a pull-down menu suff
with an ellipsis (. . .).
© National Instruments Corporation G-5 LabWindows/CVI Programmer Reference Manual

Glossary

 like
an
tem
e

rray

our
o

ing

g a

 A
ns;
 of

d in

00ProRef.book : 10gloss.fm Page 6 Monday, March 9, 1998 3:23 PM
R

return value control A function panel control that displays a value returned from a
function as a return value rather than as a formal parameter.

ring control A function panel control that represents a range of values much
the slide control, but displays only a single item in a list, rather th
displaying the whole list at once as the slide control does. Each i
has a different value associated with it. This value is placed in th
function call.

rvalue Any C expression that is not an lvalue. Examples of rvalues are a
names, functions, function calls such as f() , assignment expressions
such as x = e and cast expressions such as (AnyType)e .

S

SDK Windows Software Development Kit. An API in the Windows
operating system.

scroll bars Areas along the bottom and right sides of a window that show y
relative position in the file. You can use scroll bars can be used t
move about in the window.

scrollable text box A dialog box item that displays text in a scrollable display.

select To choose the item that the next executed action affects by mov
the input focus (highlight) to a particular item or area.

shortcut key command A combination of keystrokes that provide a means of executin
command without accessing a menu in the command bar.

slide control A function panel control that resembles a physical slide switch.
slide control is a means for selecting one item from a list of optio
it inserts a value in a function call that depends upon the position
the cross-bar on the switch.

slider The cross-bar on the slide control that determines the value place
the function call.

Source window A LabWindows/CVI work area where you edit and execute
programs.
LabWindows/CVI Programmer Reference Manual G-6 © National Instruments Corporation

Glossary

t

g

s

,
e
al

tly

00ProRef.book : 10gloss.fm Page 7 Monday, March 9, 1998 3:23 PM
Standard Input/Output
window

A LabWindows/CVI work area in which textual output to and inpu
from the user take place.

standard libraries The LabWindows/CVI User Interface, Analysis, Data Formattin
and I/O, GPIB, GPIB-488.2, DDE, TCP, RS-232, Utility, and
C system libraries.

stdcall A Windows 95/NT calling convention in which function calls pas
arguments from right to left, and the function restores the stack
pointer before it returns.

String Display window A window for viewing and editing string variables and arrays.

T

text box A dialog box item in which you enter text from the keyboard or
view text.

U

User Interface Editor window The window in which you build pull-down menus, dialog boxes
panels, and controls and save them to a User Interface Resourc
(.uir) file. The LabWindows/CVI User Interface Reference Manu
describes it.

V

Variables window A window that shows the values of the variables that are curren
active.
© National Instruments Corporation G-7 LabWindows/CVI Programmer Reference Manual

Glossary

and

00ProRef.book : 10gloss.fm Page 8 Monday, March 9, 1998 3:23 PM
W

Watch window A window that shows the values of selected variables and
expressions that are currently active.

window A working area that supports specific tasks related to developing
executing programs.
LabWindows/CVI Programmer Reference Manual G-8 © National Instruments Corporation

00ProRef.book : 11Index.fm Page 1 Monday, March 9, 1998 3:23 PM
Index
8

Special Characters/Numbers
#line preprocessor directive, 1-2
_cdecl calling convention qualifier, 1-2
__cdecl calling convention qualifier, 1-2
__declspec(dllexport) qualifier, 1-3, 3-22
__declspec(dllimport) qualifier, 1-3
_export qualifier, 1-3
__export qualifier, 1-3, 3-22
_import qualifier, 1-3
__import qualifier, 1-3
_NI_mswin_ macro, 6-1
_NI_mswin16_ macro, 6-1
_NI_mswin32_ macro, 6-1
_NI_sparc_ macro, 6-1
_NI_unix_ macro, 6-1
_stdcall calling convention qualifier, 1-2
__stdcall calling convention qualifier

creating static libraries (note), 3-25
creating static objects (note), 3-26
declaring functions for export, 3-21 to 3-22
purpose and use, 1-3

16-bit source code, converting to 32-bit source
code, 1-6 to 1-7

16-bit Windows DLLs. See Windows
16-bit DLLs.

32-bit Borland or Symantec compiled modules
under Windows, 4-2 to 4-3

32-bit source code
converting 16-bit source code to 32-bit

source code, 1-6 to 1-7
DLL calling directly back into 32-bit code,

4-12 to 4-15
32-bit Watcom compiled modules under

Windows 3.1, 4-1 to 4-2
32-bit Windows DLLs. See Windows

32-bit DLLs.

A
.a files, using with standalone executables, 7-9
ActiveX Automation Library, 9-6
Add Files to DLL button, 7-15
Add Files to Executable button, 7-15
Advanced Analysis Library, 9-3
Analysis Library, 9-3
ANSI C Library

include files, for Windows 95/NT, 3-10
status reporting by, 9-7
Sun Solaris libraries

incompatibilities with
LabWindows/CVI, 5-10 to 5-11

non-ANSI behavior, 5-4
Solaris 1 implementation, 5-8 to 5-9
static and shared versions, 5-3

ANSI C specifications
multiplatform application portability, 6-2
non-ANSI LabWindows/CVI compiler

keywords, 1-2
using low-level I/O functions, 1-5

array indexing errors. See pointer protection
errors.

array passing in glue code, 4-9 to 4-11
asynchronous callbacks, compiled modules

using, 2-7
asynchronous DLL functions, 4-11 to 4-12
asynchronous signal handling, UNIX, 5-7 to 5-
© National Instruments Corporation I-1 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 2 Monday, March 9, 1998 3:23 PM
B
bit fields, Windows 32-bit DLLs, 3-6
Borland C/C++

Borland or Symantec 32-bit compiled
modules under Windows, 4-2 to 4-3

Builder not supported by
LabWindows/CVI object or static
library files, 3-17

creating 16-bit Windows DLLs, 4-22
creating object and library files, 3-18
default library directives, 3-16
static versus dynamic C libraries, 3-17
turning off incremental linker, 3-17

Break on Library Errors option, 1-12,
7-19, 9-1

buffer retention by DLL glue code,
4-11 to 4-12

Build menu
Create Distribution Kit command,

7-1, 7-9
External Compiler Support command,

3-11, 3-13
Target command, 3-20, 3-21, 3-25

building platform-independent applications.
See multiplatform applications, building.

bulletin board support, B-1

C
.c files. See source files.
C language extensions

calling conventions (Windows 95/NT),
1-2 to 1-3

C++-style comment markers, 1-4
duplicate typedefs, 1-4
import and export qualifiers, 1-3 to 1-4
non-ANSI C standard keywords, 1-2
program entry points (Windows), 1-5
structure packing pragma (Windows),

1-4 to 1-5

C library issues, 1-5
C++ style comment markers, 1-4
callback functions

compiled modules using asynchronous
callbacks, 2-7

direct callback by DLLs, 4-12 to 4-15
notification of run state changes in

compiled modules, 2-4 to 2-5
using in DLLs, 2-6 to 2-7

callback references, resolving
(Windows 95/NT)

from modules loaded at run-time, 3-12
references to non-LabWindows/CVI

symbols, 3-12 to 3-13
run-time module

references to symbols not exported
from DLL, 3-13

from .uir files, 3-10 to 3-12
linking to callback functions not

exported from DLL, 3-11 to 3-12
calling conventions (Windows 95/NT)

for exported functions, 3-21 to 3-22
using qualifiers, 1-2 to 1-3

casting. See pointer casting.
cdecl calling convention, 1-2
_cdecl calling convention qualifier, 1-2
__cdecl calling convention qualifier, 1-3
Check Disk Dates Before Each Run

option, 4-4
CloseCVIRTE function, 3-14 to 3-15
code. See source files.
colors, multiplatform application

considerations, 6-3
comment markers, C++ style, 1-4
compiled modules. See loadable compiled

modules.
compiler. See also compiler options.

C library issues, 1-5
using low-level I/O functions, 1-5

compiler defines, 1-2
compiler limits (table), 1-1
LabWindows/CVI Programmer Reference Manual I-2 © National Instruments Corporation

Index

d,

00ProRef.book : 11Index.fm Page 3 Monday, March 9, 1998 3:23 PM
data types
allowable data types (table), 1-6
converting 16-bit code to 32-bit

code, 1-6 to 1-7
debugging levels, 1-8
error messages, A-1 to A-46
limits (table), 1-1
non-ANSI C keywords, 1-2
overview, 1-1
user protection errors

general protection errors, 1-11
library protection errors, 1-11 to 1-12
memory corruption (fatal), 1-11
memory deallocation

(non-fatal), 1-11
pointer arithmetic (non-fatal),

1-8 to 1-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (non-fatal), 1-10
pointer dereference errors (fatal),

1-9 to 1-10
pointer subtraction (non-fatal), 1-10

Compiler Defines command, Options menu,
1-2, 3-27

compiler options
compiled object modules

Borland C 4.x, 4-3
Symantec C++ 6.0, 4-3
Watcom, 4-2

setting, 1-2
Compiler Options command, Options

menu, 1-2
compiler/linker issues. See specific operating

system, e.g., UNIX operating system.
configuring Run-time Engine. See Run-time

Engine, configuring.
converting 16-bit source code to 32-bit source

code, 1-6 to 1-7
Create Distribution Kit command, Build

menu, 7-1, 7-9

Create Dynamic Link Library command,
3-24, 7-18

Create Object File command, Options
menu, 3-26

Create Standalone Executable File comman
3-20, 7-16

Create Static Library command, 3-21, 3-26
creating

loadable compiled modules. See loadable
compiled modules.

platform-independent applications. See
multiplatform applications, building.

standalone executables. See standalone
executables, creating and distributing.

Windows DLLs. See Windows 16-bit
DLLs; Windows 32-bit DLLs.

customer communication, xvi, B-1 to B-2
cvidir configuration option

(Windows 95/NT), 7-7
CVIRTEHasBeenDetached function, 3-3
cvirtx configuration option (Windows 3.1), 7-6

D
Data Acquisition Library, 9-4
data types

allowable data types for compiler
(table), 1-6

converting 16-bit source code to 32-bit
source code, 1-6 to 1-7

DDE Library, 9-6
debugging levels

Extended, 1-8
setting, 1-8
Standard, 1-8

__declspec(dllexport) qualifier, 1-3, 3-22
__declspec(dllimport) qualifier, 1-3
distributing libraries, 8-1 to 8-3

adding to user’s Library menu, 8-1 to 8-2
specifying library dependencies,

8-2 to 8-3
© National Instruments Corporation I-3 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 4 Monday, March 9, 1998 3:23 PM
distributing standalone executables. See
standalone executables, creating and
distributing.

DLLEXPORT macro, 1-4, 3-22 to 3-23
DLLIMPORT macro, 1-4
DllMain function, in DLLs, 3-3
DLLs. See Windows 16-bit DLLs; Windows

32-bit DLLs.
DLLSTDCALL macro, 3-22, 3-24
dlopen function, Sun Solaris, 5-2
documentation

conventions used in manual, xiv-xv
organization of manual, xiii-xiv
related documentation, xv

doubles, returning, 3-7
DSTRules option, 7-7
duplicate typedefs, 1-4
dynamic memory protection, 1-15
dynamic memory protection errors

memory corruption (fatal), 1-11
memory deallocation (non-fatal), 1-11

E
Easy I/O for DAQ Library, 9-4
Edit menu

Function Tree Editor, 8-2
Source, Interactive Execution, and

Standard Input/Output windows, 3-3
electronic support services, B-1 to B-2
e-mail support, B-2
enum sizes, Windows 32-bit DLLs, 3-7
error checking, 9-1 to 9-7

Break on Library Errors option, 1-12,
7-19, 9-1

overview, 9-1
standalone executables, 7-19

status codes
checking function call status

codes, 9-1
returned by LabWindows/CVI

functions, 9-2 to 9-3
status reporting by libraries and

instrument drivers, 9-3 to 9-7
errors. See also user protection errors.

compiler-related error messages,
A-1 to A-46

events, multiplatform application
considerations, 6-3

executable file, required for standalone
executables, 7-8

executables, creating and distributing. See
standalone executables, creating and
distributing.

export qualifiers
_export, 1-3
__export, 1-3, 3-22
exporting DLL functions and

variables, 3-22
purpose and use, 1-3 to 1-4

External Compiler Support command, Build
menu, 3-11, 3-13

external modules. See also loadable compiled
modules.

definition, 2-4
forcing referenced modules into

executable or DLL, 7-15
multiplatform application

considerations, 6-3
under UNIX

compiling with external compilers,
5-6 to 5-7

restrictions, 5-6
using loadable compiled module as, 2-4
LabWindows/CVI Programmer Reference Manual I-4 © National Instruments Corporation

Index

s

00ProRef.book : 11Index.fm Page 5 Monday, March 9, 1998 3:23 PM
F
fax and telephone support numbers, B-2
Fax-on-Demand support, B-1
files for running standalone executables

accessing UIR, image, and panel state
files, 7-12

DLL files
Windows 3.1, 7-13 to 7-14
Windows 95/NT, 7-13

loading files using LoadExternalModule,
7-14 to 7-18

DLL files and DLL path files
(Windows 3.1), 7-17 to 7-18

DLL files (Windows 95/NT), 7-17
files in project, 7-15 to 7-16
forcing referenced modules into

executable or DLL, 7-15
library files not in project, 7-16
object files not in project, 7-16
other types of files, 7-19
source files, 7-18

location of files on target machine,
7-9 to 7-19

relative pathnames for accessing
files, 7-19

required files, 7-8 to 7-9
floats, returning, 3-7
fonts

multiplatform application
considerations, 6-3

Windows 95/NT files for standalone
executables, 7-11

Formatting and I/O Library, 9-6 to 9-7
forward <delete> key, multiplatform

application considerations, 6-3
.FP Auto-Load List command, Edit menu, 8-2
FTP support, B-1
functions exported by ordinal value only, 4-20

G
general protection errors, 1-11
Generate DLL Glue Code command, Option

menu, 4-8, 4-9
Generate DLL Glue Object command,

Options menu, 7-17
Generate DLL Import Library command,

Options menu, 3-4, 3-5
Generate DLL Import Source command,

Options menu, 3-21
Generate Windows Help command, Options

menu, 3-25
GetCVIWindowHandle function, 4-21
glue code. See Windows 16-bit DLLs.
GNU C Compiler, 5-3
GPIB/GPIB 488.2 Library, 9-4 to 9-5
graphical user interface (GUI), multiplatform

application considerations, 6-3

H
hardware interrupts under

Windows 95/NT, 3-29
hot keys, multiplatform application

considerations, 6-3

I
image files

accessing from standalone
executables, 7-12

multiplatform application
considerations, 6-3

using with standalone executables, 7-9
import libraries (Windows 95/NT)

automatic loading of SDK import
libraries, 3-27 to 3-28

compatibility with external compilers, 3-5
customizing DLL import libraries,

3-20 to 3-21
© National Instruments Corporation I-5 LabWindows/CVI Programmer Reference Manual

Index

r

00ProRef.book : 11Index.fm Page 6 Monday, March 9, 1998 3:23 PM
generating DLL import library, 3-4
link errors when using DLL import

libraries, 3-2
import qualifiers

_import, 1-3
__import, 1-3
marking imported symbols in include file,

3-23 to 3-24
purpose and use, 1-2 to 1-3

include files
ANSI C library and LabWindows/CVI

libraries, 3-10
generating glue code, 4-9
Windows 32-bit DLLs

exporting DLL functions and
variables, 3-22

marking imported symbols in include
file, 3-23 to 3-24

Windows SDK functions, 3-26 to 3-27
include paths, setting up for

LabWindows/CVI, ANSI C, and SDK
libraries, 3-28 to 3-29

Include Paths command, Options menu,
1-17, 3-28

InitCVIRTE, calling
UNIX executables, 5-4 to 5-5
Windows 95/NT executables,

3-14 to 3-15
Insert Constructs command, Edit menu, 3-3
Instrument Directories command, Options

menu, 8-2
instrument drivers

definition, 2-2
status reporting, 9-7
using loadable compiled modules as

program files, 2-2
Instrument menu, 2-3, 7-15
interrupts under Windows 95/NT, 3-29
IVI Library, 9-5

K
keywords, non-ANSI LabWindows/CVI, 1-2

L
LabWindows/CVI compiler. See compiler.
LabWindows/CVI Run-time Engine. See

Run-time Engine.
.lib files. See library files.
libraries

C library issues, 1-5
creating static libraries, 3-25
distributing, 8-1 to 8-3

adding to user’s Library menu,
8-1 to 8-2

specifying library dependencies,
8-2 to 8-3

loading library files for standalone
executables, 7-16

portability issues for multiplatform
applications, 6-1 to 6-2

using loadable compiled modules as use
libraries, 2-3

Windows 95/NT compiler issues
calling InitCVIRTE and

CloseCVIRTE, 3-14 to 3-15
include files for ANSI C library and

LabWindows/CVI libraries, 3-10
multithreading and

LabWindows/CVI libraries, 3-8
resolving callback references from

.uir files, 3-10 to 3-12
resolving references from modules

loaded at run-time, 3-12
standard input/output windows, 3-10
using LabWindows/CVI libraries in

external compilers, 3-9 to 3-15
LabWindows/CVI Programmer Reference Manual I-6 © National Instruments Corporation

Index

,

00ProRef.book : 11Index.fm Page 7 Monday, March 9, 1998 3:23 PM
library files
compatibility with external compilers

(Windows 95/NT), 3-5
creating in external compilers for use in

LabWindows/CVI, 3-18 to 3-19
loading with LoadExternalModule, 7-16
using with standalone executables, 7-9

library function user protection errors, 1-16
disabling, 1-13 to 1-14

Library menu
appearance of user libraries on, 2-3
installing user libraries, 2-3, 8-1 to 8-2
linking modules with external

modules, 7-15
Library Options command, Project Options

menu, 2-3, 8-1
library protection errors, 1-11 to 1-12

disabling
for functions, 1-13 to 1-14
at run-time, 1-12

errors involving library protection,
1-11 to 1-12

loadable compiled modules
16-bit Windows DLLs

creating
with Borland C++, 4-22
with Microsoft Visual C++ 1.5,

4-21 to 4-22
glue code

DLLs unable to use glue code
generated at load time,
4-8 to 4-20

DLLs using glue code generated
at load time, 4-8

requirements, 4-7
helpful LabWindows/CVI

options, 4-4
overview, 4-3 to 4-4
rules and restrictions, 4-5 to 4-7
search precedence, 4-23 to 4-24

32-bit Borland or Symantec compiled
modules under Windows, 4-2 to 4-3

32-bit Watcom compiled modules under
Windows 3.1, 4-1 to 4-2

advantages and disadvantages, 2-2
external modules, 2-4
instrument driver program files,

2-2 to 2-3
modules compiled by

LabWindows/CVI, 4-1
multiplatform application

considerations, 6-3
notification of run state changes,

2-4 to 2-6
examples of program state changes

2-5 to 2-6
modules using asynchronous

callbacks, 2-4
overview, 2-1
project list, 2-3 to 2-4
requirements, 2-1
UNIX compiler/linker issues, 5-6 to 5-7

compiling, 5-6 to 5-7
restrictions, 5-6

user libraries, 2-3
Windows messages passed from

DLLs, 4-21
GetCVIWindowHandle

function, 4-21
RegisterWinMsgCallback

function, 4-21
UnRegisterWinMsgCallback

function, 4-21
LoadExternalModule rules, 7-14 to 7-18

DLL files and DLL path files
(Windows 3.1), 7-17 to 7-18

DLL files (Windows 95/NT), 3-2, 7-17
files listed in project, 7-15 to 7-16
forcing modules into executable or

DLL, 7-15
library files not in project, 7-16
object files not in project, 7-16
© National Instruments Corporation I-7 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 8 Monday, March 9, 1998 3:23 PM
other types of files, 7-19
source files, 7-18

locking process segments into memory using
plock(), 5-7

long doubles, Windows 32-bit DLLs, 3-7
low-level I/O functions, using, 1-5
low-level support driver, used by Run-time

Engine, 7-10 to 7-11

M
macros, predefined, 6-1
manual. See documentation.
math coprocessor software emulation for

Windows 3.1, 7-2
memory protection errors

memory corruption (fatal), 1-11
memory deallocation (non-fatal), 1-11

message file for Run-time Engine
translating, 7-5
Windows 95/NT, 7-11

messages passed from DLLs. See Windows
messages passed from DLLs.

Microsoft Visual Basic, automatic inclusion of
Type Library resource for, 3-24 to 3-25

Microsoft Visual C/C++
creating 16-bit Windows DLLs,

4-21 to 4-22
creating object and library files, 3-18
default library directives, 3-16

minimum system requirements for standalone
executables, 7-1 to 7-2

missing return value (non-fatal) error, 1-11
modini program (caution), 8-2, 8-3
modreg program (caution), 8-2, 8-3
multiplatform applications, building

externally compiled module issues, 6-3
library portability issues, 6-1 to 6-2
predefined macros, 6-1
programming guidelines, 6-1 to 6-3
user interface guidelines, 6-3

multithreading
creating multiple threads with Windows

SDK functions, 3-27
using LabWindows/CVI libraries, 3-8

N
_NI_mswin_ macro, 6-1
_NI_mswin16_ macro, 6-1
_NI_mswin32_ macro

multiplatform programming, 6-1
required for external compilers, 3-8

_NI_sparc_ macro, 6-1
_NI_unix_ macro, 6-1

O
.o files

loading with LoadExternalModule, 7-14
using with standalone executables, 7-9

object files
compatibility with external compilers

(Windows 95/NT), 3-5
creating

in external compilers for use in
LabWindows/CVI, 3-18 to 3-19

in LabWindows/CVI, 3-26
loading with LoadExternalModule, 7-14
using with standalone executables, 7-9

Options menu
Function Tree Editor, Generate Windows

Help command, 3-25
Project window

Compiler Defines command,
1-2, 3-27

Compiler Options command, 1-2
Include Paths command, 1-17, 3-28
Instrument Directories

command, 8-2
Run Options command, 1-8,

1-12, 1-16
LabWindows/CVI Programmer Reference Manual I-8 © National Instruments Corporation

Index

g

,

00ProRef.book : 11Index.fm Page 9 Monday, March 9, 1998 3:23 PM
Source, Interactive Execution, and
Standard Input/Output windows

Create Object File command, 3-26
Generate DLL Glue Code command,

4-8, 4-9
Generate DLL Glue Object

command, 7-17
Generate DLL Import Library

command, 3-4, 3-5
Generate DLL Import Source

command, 3-21
ordinal value for exporting functions, 4-20

P
pack pragma (Windows), 1-4 to 1-5, 3-6
panel state files

accessing from standalone
executables, 7-12

required for standalone executables, 7-9
pascal, Pascal, and _pascal keywords, 1-2
Pascal DLL functions, 4-8, 4-9
path files. See .pth files.
PCX files, multiplatform application

considerations, 6-3
platform-independent applications, building.

See multiplatform applications, building.
plock function, UNIX, 5-7
pointer casting, 1-14
pointer protection errors, 1-8 to 1-10

disabling for individual pointers,
1-12 to 1-13

dynamic memory protection errors, 1-11
pointer arithmetic (non-fatal), 1-8 to 1-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (non-fatal), 1-10
pointer dereference errors (fatal),

1-9 to 1-10
pointer subtraction (non-fatal), 1-10

pointers
DLLs passing pointers that point to other

pointers, 4-18 to 4-20
returned by DLLs, 4-15 to 4-17

pragmas
disabling or enabling library protection

errors, 1-13 to 1-14
structure packing (Windows),

1-4 to 1-5, 3-6
predefined macros, 6-1
printf function

LabWindows/CVI implementation, 5-4
using with external compiler, 3-10

process segments, locking into memory usin
plock(), 5-7

program entry points (Windows), 1-5
Project window, Run Options menu, 4-4
projects. See also source files.

loadable compiled modules in project list
2-3 to 2-4

loading project files with
LoadExternalModule, 7-15 to 7-16

.pth files
loading with LoadExternalModule,

7-17 to 7-18
not supported for Windows 95/NT, 3-2
using with standalone executables, 7-9

Q
Q387 coprocessor emulation software

(Quickware), 7-2

R
references, resolving. See callback references,

resolving (Windows 95/NT).
RegisterWinMsgCallback function, 4-21
Reload DLLs Before Each Run option, 4-4
resolving references. See callback references,

resolving.
© National Instruments Corporation I-9 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 10 Monday, March 9, 1998 3:23 PM
resource files (Windows 95/NT), for
standalone executables, 7-11

return values, missing (non-fatal) error, 1-11
RS-232 Library, 9-5
Run Options command, Options menu

Break on library errors option, 1-12, 7-19
setting debugging levels, 1-8
setting maximum stack size, 1-16

Run Options menu, Project window, 4-4
run state change notification for compiled

modules
asynchronous callbacks, 2-4
examples of program state changes,

2-5 to 2-6
including in DLLs, 3-2 to 3-3
prototype for callback, 2-4
requirements, 2-4
unavailable

for executables under UNIX, 5-5
for external compilers under

Windows 95/NT, 3-13 to 3-14
Run-time Engine. See also standalone

executables, creating and distributing.
configuring, 7-5 to 7-7

cvidir option, 7-7
cvirtx option, 7-6
DSTRules, 7-7
option descriptions, 7-6
setting configuration options, 7-6
Solaris 1 patches required, 7-5 to 7-6
UNIX options, 7-7
useDefaultTimer, 7-7

files required for running executable
programs, 7-8 to 7-9

location and type of files, 7-9 to 7-11
Windows 3.1, 7-11 to 7-12
Windows 95/NT, 7-10 to 7-11

overview, 7-1
shared library capability, 5-2

system requirements
Windows 3.1, 7-2
Windows 95/NT, 7-1 to 7-2

translating message file, 7-5

S
scanf function

LabWindows/CVI implementation, 5-4
using with external compiler, 3-10

SDK functions. See Windows SDK functions.
search precedence of Windows DLLs,

4-23 to 4-24
shared libraries, under UNIX, 5-2
shortcut keys, multiplatform application

considerations, 6-3
SIGBUS signal, 5-7
SIGFPE signal, 5-7
SIGILL signal, 5-7
SIGINT signal, 5-7
SIGPIPE signal, 5-7
SIGPOLL (SIGIO) signal, 5-7
SIGQUIT signal, 5-7
SIGSEGV signal, 5-7
SIGTERM signal, 5-7
Solaris. See Sun Solaris.
source files

converting 16-bit source code to 32-bit
source code, 1-6 to 1-7

loading with LoadExternalModule, 7-18
preparing for use in Windows 32-bit DLL,

3-21 to 3-24
calling conventions for exported

functions, 3-21 to 3-22
exporting DLL functions and

variables, 3-22
export qualifier method,

3-22 to 3-23
include file method, 3-22
LabWindows/CVI Programmer Reference Manual I-10 © National Instruments Corporation

Index

r

00ProRef.book : 11Index.fm Page 11 Monday, March 9, 1998 3:23 PM
marking imported symbols in include
file distributed with DLL,
3-23 to 3-24

recommendations, 3-24
stack overflow error (fatal), 1-11
stack size, 1-16 to 1-17
standalone executables, creating and

distributing
accessing UIR, image, and panel state

files, 7-12
configuring Run-time Engine, 7-5 to 7-7
distributing

Solaris 1, 7-4 to 7-5
Solaris 2, 7-3 to 7-4
UNIX, 7-2 to 7-5
Windows 3.1, 7-2
Windows 95/NT, 7-1 to 7-2

error checking, 7-19
loading files using LoadExternalModule,

7-14 to 7-18
DLL files and DLL path files

(Windows 3.1), 7-17 to 7-18
DLL files for Windows 95/NT, 7-17
library files, 7-16
object modules, 7-16
source files, 7-18

location of files on target machine,
7-9 to 7-19

DLL files
Windows 3.1, 7-10 to 7-11
Windows 95/NT, 7-10

loading files using
LoadExternalModule,
7-14 to 7-18

Run-time Engine under
Windows 95/NT, 7-10 to 7-11

UIR, image, and panel state
files, 7-12

math coprocessor software emulation fo
Windows 3.1, 7-2

relative pathnames for accessing
files, 7-19

translating message file, 7-5
UNIX compiler/linker issues, 5-3 to 5-5

compatible compilers, 5-3
InitCVIRTE called by main function,

5-4 to 5-5
non-ANSI behavior of Sun Solaris 1

ANSI C library, 5-4
printf and scanf under

LabWindows/CVI, 5-4
run state change callbacks not

available, 5-5
static and shared versions of ANSI C

and other Sun libraries, 5-3 to 5-4
Windows 3.1 system requirements,

7-1 to 7-2
Windows 95/NT, 3-20

necessary files, 7-9
system requirements, 7-1 to 7-2

standard input/output windows,
LabWindows/CVI, 3-10

state change notification for compiled
modules. See run state change notification
for compiled modules.

state files. See panel state files.
static libraries, creating, 3-25
status codes

checking function call status codes, 9-1
definition (note), 9-2
returned by LabWindows/CVI functions,

9-2 to 9-3
status reporting by libraries and instrument

drivers, 9-3 to 9-7
ActiveX Automation Library, 9-6
Advanced Analysis Library, 9-3
Analysis Library, 9-3
ANSI C Library, 9-7
Data Acquisition Library, 9-4
© National Instruments Corporation I-11 LabWindows/CVI Programmer Reference Manual

Index

6

00ProRef.book : 11Index.fm Page 12 Monday, March 9, 1998 3:23 PM
DDE Library, 9-6
Easy I/O for DAQ Library, 9-4
Formatting and I/O Library, 9-6 to 9-7
GPIB/GPIB 488.2 Library, 9-4 to 9-5
IVI Library, 9-5
LabWindows/CVI instrument drivers, 9-7
RS-232 Library, 9-5
TCP Library, 9-6
User Interface Library, 9-3
Utility Library, 9-7
VISA Library, 9-5
VXI Library, 9-4
X Property Library, 9-6

_stdcall calling convention qualifier, 1-2
__stdcall calling convention qualifier

creating static libraries (note), 3-25
creating static objects (note), 3-26
declaring functions for export,

3-21 to 3-22
purpose and use, 1-3

structure packing pragmas (Windows),
1-4 to 1-5, 3-6

Sun C Compiler, 5-3
Sun C library. See also UNIX compiler/linker

issues.
ANSI C implementation, 5-8 to 5-9

functions not available, 5-9
incompatibilities with

LabWindows/CVI, 5-10 to 5-11
replacement functions (table), 5-9

calling Sun C library from source
code, 5-1

restrictions, 5-1
LabWindows/CVI implementation of

printf and scanf, 5-4
non-ANSI behavior, 5-4
static and shared versions, 5-3
using low-level I/O functions, 1-5

Sun Solaris
distribution of standalone executables

LabWindows/CVI Run-Time Engine
files, 7-12

Solaris 1, 7-4 to 7-5
Solaris 1 patches required, 7-5 to 7-
Solaris 2, 7-3 to 7-4

incompatibilities with
LabWindows/CVI, 5-11

support modules for glue code, 4-9
Symantec C/C++

creating object and library files, 3-19
default directives, 3-16
Symantec or Borland 32-bit compiled

modules under Windows, 4-2 to 4-3

T
Target command, Build menu, 3-20,

3-21, 3-25
TCP Library, 9-6
technical support, B-1 to B-2
telephone and fax support numbers, B-2
Type Library resource for Visual Basic,

3-24 to 3-25
typedefs, duplicate, 1-4

U
.uir files. See user interface resource

(.uir) files.
unions, 1-16
UNIX C library. See Sun C library.
UNIX compiler/linker issues, 5-1 to 5-11

asynchronous signal handling, 5-7 to 5-8
calling Sun C library functions, 5-1

restrictions, 5-1
creating executables, 5-3 to 5-5

compatible external compilers, 5-3
InitCVIRTE called by main function,

5-4 to 5-5
LabWindows/CVI Programmer Reference Manual I-12 © National Instruments Corporation

Index

00ProRef.book : 11Index.fm Page 13 Monday, March 9, 1998 3:23 PM
non-ANSI behavior of Sun Solaris 1
ANSI C library, 5-4

printf and scanf functions under
LabWindows/CVI, 5-4

run state change callbacks not
available, 5-5

static and shared versions of ANSI C
and Sun libraries, 5-3 to 5-4

externally compiled modules, 5-6 to 5-7
compiling, 5-6 to 5-7
restrictions, 5-6

incompatibilities, 5-10 to 5-11
between LabWindows/CVI and

ANSI C, 5-10 to 5-11
between LabWindows/CVI and Sun

Solaris, 5-11
locking process segments in memory

using plock(), 5-7
shared libraries, 5-2

LabWindows/CVI Run-time Engine
as shared library, 5-2

using dlopen, 5-2
Solaris 1 ANSI C Library

implementation, 5-8 to 5-9
functions not found in Sun Solaris 1

libc, 5-9
replacement functions (table), 5-9

UNIX operating system
configuration options for Run-time

Engine, 7-7
distribution of standalone executables,

7-2 to 7-5
minimum system requirements, 7-5
Solaris 1, 7-4 to 7-5
Solaris 2, 7-3 to 7-4

Unload command, Instruments menu, 2-3
UnRegisterWinMsgCallback function, 4-21
useDefaultTimer option, 7-7
user interface. See graphical user

interface (GUI).
user interface events. See events.

User Interface Library, 9-3
user interface resource (.uir) files

accessing from running standalone
executables, 7-12

multiplatform application
considerations, 6-3

required for running standalone
executables, 7-9

resolving callback references from,
3-10 to 3-12

linking to callback functions not
exported from DLL, 3-11 to 3-12

user libraries. See also libraries.
installing, 2-3
similarity with instrument driver, 2-3
using loadable compiled modules, 2-3

user protection
dynamic memory, 1-15
library functions, 1-16
pointer casting, 1-14
stack size, 1-16 to 1-17
unions, 1-16

user protection errors
disabling, 1-12 to 1-14

for individual pointer, 1-12 to 1-13
library errors

for functions, 1-13 to 1-14
at run-time, 1-12

at run-time, 1-12
error category, 1-8
general protection errors, 1-11
library protection errors, 1-11 to 1-12
memory corruption (fatal), 1-11
memory deallocation (non-fatal), 1-11
pointer arithmetic (non-fatal), 1-8 to 1-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (non-fatal), 1-10
pointer dereference errors (fatal),

1-9 to 1-10
© National Instruments Corporation I-13 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 14 Monday, March 9, 1998 3:23 PM
pointer subtraction (non-fatal), 1-10
severity level, 1-8

Utility Library, 9-7

V
va_arg (ap, type), 1-2
VISA Library, 9-5
Visual Basic. See Microsoft Visual Basic.
Visual C/C++. See Microsoft Visual C/C++.
VXI Library, 9-4

W
Watcom C/C++

32-bit compiled modules under
Windows 3.1, 4-1 to 4-2

creating object and library files, 3-19
default directives, 3-16
pull-in references, 3-17
stack based calling convention, 3-15

Watcom WEMU387.386 coprocessor
emulation software, 7-2

Windows 3.1
compiler/linker issues

16-bit Windows DLLs. See Windows
16-bit DLLs.

32-bit Borland or Symantec
compiled modules, 4-2 to 4-3

32-bit Watcom compiled modules,
4-1 to 4-2

modules compiled by
LabWindows/CVI, 4-1

cvirtx option for configuring Run-time
Engine, 7-6

distributing standalone executables
math coprocessor software

emulation, 7-2
minimum system requirements, 7-2

structure packing pragmas, 1-4 to 1-5

Windows 16-bit DLLs
creating

with Borland C++, 4-22
with Microsoft Visual C++ 1.5,

4-21 to 4-22
DLLs unable to use glue code generated

at load time, 4-8 to 4-20
arrays bigger than 64 K, 4-9 to 4-11
buffer retained after function returns

(asynchronous function),
4-11 to 4-12

direct callbacks into 32-bit code,
4-12 to 4-15

functions exported by ordinal value
only, 4-20

loading, 4-8 to 4-9
pointer that points to other pointers,

4-18 to 4-20
returning pointers, 4-15 to 4-17
rules for include file, 4-9
support module required outside of

DLL, 4-9
DLLs using glue code generated at load

time, 4-8
fixing linker error (note), 4-7
helpful LabWindows/CVI options, 4-4
not supported in Windows 95/NT, 3-2
overview, 4-3 to 4-4
requirements, 4-7
rules and restrictions, 4-5 to 4-7
search precedence, 4-23 to 4-24
for standalone executables

definition, 7-9
loading with LoadExternalModule,

7-17 to 7-18
rules for using, 7-13 to 7-14

unusable in specific situations, 4-8
LabWindows/CVI Programmer Reference Manual I-14 © National Instruments Corporation

Index

8

00ProRef.book : 11Index.fm Page 15 Monday, March 9, 1998 3:23 PM
Windows 32-bit DLLs
compatibility with external compilers

bit fields, 3-6
choosing compatible compiler, 3-5
enum sizes, 3-7
long doubles, 3-7
returning floats and doubles, 3-7
returning structures, 3-7
structure packing, 3-6

creating in LabWindows/CVI,
3-20 to 3-25

automatic inclusion of Type Library
resource for Visual Basic,
3-24 to 3-25

calling conventions for exported
functions, 3-21 to 3-22

customizing import library,
3-20 to 3-21

exporting DLL functions and
variables, 3-22

export qualifier method,
3-22 to 3-23

include file method, 3-22
marking imported symbols in include

file distributed with DLL,
3-23 to 3-24

preparing source code, 3-21 to 3-24
recommendations, 3-24

DLL import library compatibility with
external compilers, 3-5

loading, 3-1 to 3-4
16-bit DLLs not supported, 3-2
default unloading/reloading

policy, 3-4
DLL path (.pth) files not

supported, 3-2
DllMain function, 3-3
DLLs for instrument drivers and user

libraries, 3-2
generating import library, 3-4
link errors when using DLL import

libraries, 3-2

releasing resources when DLL
unloads, 3-3 to 3-4

run state change callbacks in DLLs,
3-2 to 3-3

using LoadExternalModule
function, 3-2

for standalone executables
distributing, 7-9
loading with

LoadExternalModule, 7-17
location, 7-10
rules for using, 7-13

using run state change callbacks,
2-6 to 2-7

Windows 95/NT
32-bit DLLS. See Windows 32-bit DLLs.
calling convention qualifiers in function

declarations, 1-2 to 1-3
calling SDK functions in

LabWindows/CVI, 3-26 to 3-28
automatic loading of SDK import

libraries, 3-27 to 3-28
creating multiple threads using

Windows SDK functions, 3-27
SDK include files, 3-26 to 3-27
user interface capabilities, 3-27

compatibility with external compilers,
3-4 to 3-8

choosing a compiler, 3-5
DLLs, 3-5
external compiler versions

supported, 3-8
LabWindows/CVI differences,

3-7 to 3-8
object files, library files, and DLL

import libraries, 3-5
required preprocessor definitions, 3-

compiler/linker issues
calling SDK functions, 3-26 to 3-28
compatibility with external

compilers, 3-4 to 3-8
creating DLLs, 3-20 to 3-25
© National Instruments Corporation I-15 LabWindows/CVI Programmer Reference Manual

Index

00ProRef.book : 11Index.fm Page 16 Monday, March 9, 1998 3:23 PM
creating executables, 3-20
creating object and library files in

external compilers, 3-18 to 3-19
creating object files, 3-26
creating static libraries, 3-25
hardware interrupts, 3-29
LabWindows/CVI libraries in

external compilers, 3-9 to 3-15
loading 32-bit DLLs, 3-1 to 3-4
multithreading, 3-8
object and library files in external

compilers, 3-15 to 3-17
setting up include paths, 3-28 to 3-29

creating object and library files in external
compiler, 3-18 to 3-19

Borland C/C++, 3-18
Microsoft Visual C/C++, 3-18
Symantec C/C++, 3-19
Watcom C/C++, 3-19

creating object files in
LabWindows/CVI, 3-26

creating static libraries in
LabWindows/CVI, 3-25

cvidir option for configuring Run-time
Engine, 7-7

distributing standalone executables
coprocessor not required, 7-2
creating in LabWindows/CVI, 3-20
location of files, 7-10 to 7-11
low-level support driver, 7-10 to 7-11
message, resource, and font

files, 7-11
minimum system requirements, 7-1
National Instruments hardware I/O

libraries, 7-11
Run-time Library DLLs, 7-10
system requirements, 7-1 to 7-2

hardware interrupts, 3-29

LabWindows/CVI libraries in external
compilers, 3-9 to 3-15

calling InitCVIRTE and
CloseCVIRTE, 3-14 to 3-15

include files, 3-10
resolving callback references from

.uir files, 3-10 to 3-12
resolving references from modules

loaded at run-time, 3-12 to 3-13
run state change callbacks

unavailable, 3-13 to 3-14
standard input/output window, 3-10
Watcom stack based calling

convention, 3-15
multithreading and LabWindows/CVI

libraries, 3-8
program entry points, 1-5
setting up include paths for

LabWindows/CVI, ANSI C, and SDK
libraries, 3-28 to 3-29

structure packing pragmas, 1-4 to 1-5
using object and library files in external

compiler, 3-15 to 3-17
Borland C++ Builder, 3-17
Borland incremental linker, 3-17
Borland static versus dynamic C

libraries, 3-17
default library directives,

3-15 to 3-16
Borland C/C++, 3-16
Microsoft Visual C/C++, 3-16
Symantec C/C++, 3-16
Watcom C/C++, 3-16

Watcom pull-in references, 3-17
Windows messages passed from DLLs, 4-21

GetCVIWindowHandle function, 4-21
RegisterWinMsgCallback function, 4-21
UnRegisterWinMsgCallback

function, 4-21
LabWindows/CVI Programmer Reference Manual I-16 © National Instruments Corporation

Index

00ProRef.book : 11Index.fm Page 17 Monday, March 9, 1998 3:23 PM
Windows SDK functions, 3-26 to 3-28
automatic loading of SDK import

libraries, 3-27 to 3-28
calling in LabWindows/CVI, 3-26 to 3-28
creating multiple threads, 3-27
include files, 3-26 to 3-27
setting up include paths for SDK libraries,

3-28 to 3-29
user interface capabilities, 3-27

X
X Property Library, status reporting by, 9-6
© National Instruments Corporation I-17 LabWindows/CVI Programmer Reference Manual

	LabWindows/CVI Programmer Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 LabWindows/CVI Compiler
	Overview
	LabWindows/CVI Compiler Specifics
	Compiler Limits
	Compiler Options
	Compiler Defines

	C Language Non-Conformance
	C Language Extensions
	Keywords That Are Not ANSI C Standard
	Calling Conventions (Windows 95/NT Only)
	Import and Export Qualifiers
	C++ Comment Markers
	Duplicate Typedefs
	Structure Packing Pragma (Windows 3.1 and Windows ...
	Program Entry Points (Windows 95/NT Only)

	C Library Issues
	Using the Low-Level I/O Functions

	C Data Types and 32-Bit Compiler Issues
	Data Types
	Converting 16-Bit Source Code to 32-Bit Source Cod...

	Debugging Levels
	User Protection
	Array Indexing and Pointer Protection Errors
	Pointer Arithmetic (Non-Fatal)
	Pointer Assignment (Non-Fatal)
	Pointer Dereference Errors (Fatal)
	Pointer Comparison (Non-Fatal)
	Pointer Subtraction (Non-Fatal)
	Pointer Casting (Non-Fatal)

	Dynamic Memory Protection Errors
	Memory Deallocation (Non-Fatal)
	Memory Corruption (Fatal)

	General Protection Errors
	Library Protection Errors
	Disabling User Protection
	Disabling Protection Errors at Run-Time
	Disabling Library Errors at Run-Time
	Disabling Protection for Individual Pointer
	Disabling Library Protection Errors for Functions

	Details of User Protection
	Pointer Casting
	Dynamic Memory
	Library Functions
	Unions

	Stack Size
	Include Paths
	Include Path Search Precedence

	Chapter 2 Using Loadable Compiled Modules
	About Loadable Compiled Modules
	Advantages and Disadvantages of Using Loadable Com...
	Using a Loadable Compiled Module as an Instrument ...
	Using a Loadable Compiled Module as a User Library...
	Using a Loadable Compiled Module in the Project Li...
	Using a Loadable Compiled Module as an External Mo...
	Notification of Changes in Run State
	Example 1
	Example 2

	Using Run State Change Callbacks in a DLL
	Compiled Modules that Contain Asynchronous Callbac...

	Chapter 3 Windows 95/NT Compiler/Linker Issues
	Loading 32-Bit DLLs under Windows�95/NT
	DLLs for Instrument Drivers and User Libraries
	Using The LoadExternalModule Function
	Link Errors when Using DLL Import Libraries
	DLL Path (.pth) Files Not Supported
	16-Bit DLLs Not Supported
	Run State Change Callbacks in DLLs
	DllMain
	Releasing Resources when a DLL Unloads
	Generating an Import Library
	Default Unloading/Reloading Policy

	Compatibility with External Compilers
	Choosing Your Compatible Compiler
	Object Files, Library Files, and DLL Import Librar...
	Compatibility Issues in DLLs
	Structure Packing
	Bit Fields
	Returning Floats and Doubles
	Returning Structures
	Enum Sizes
	Long Doubles

	Differences between LabWindows/CVI and the Externa...
	External Compiler Versions Supported
	Required Preprocessor Definitions

	Multithreading and the LabWindows/CVI Libraries
	Using LabWindows/CVI Libraries in External Compile...
	Include Files for the ANSI C Library and the LabWi...
	Standard Input/Output Window
	Resolving Callback References from .UIR Files
	Linking to Callback Functions Not Exported from a ...

	Resolving References from Modules Loaded at Run-Ti...
	Resolving References to the LabWindows/CVI Run-Tim...
	Resolving References to Symbols Not in Run-Time En...
	Resolving Run-Time Module References to Symbols No...

	Run State Change Callbacks Are Not Available in Ex...
	Calling InitCVIRTE and CloseCVIRTE
	Watcom Stack Based Calling Convention

	Using Object and Library Files in External Compile...
	Default Library Directives
	Microsoft Visual C/C++
	Borland C/C++
	Watcom C/C++
	Symantec C/C++

	Borland Static versus Dynamic C Libraries
	Borland Incremental Linker
	Borland C++ Builder
	Watcom Pull-in References

	Creating Object and Library Files in External Comp...
	Microsoft Visual C/C++
	Borland C/C++
	Watcom C/C++
	Symantec C/C++

	Creating Executables in LabWindows/CVI
	Creating DLLs in LabWindows/CVI
	Customizing an Import Library
	Preparing Source Code for Use in a DLL
	Calling Convention for Exported Functions
	Exporting DLL Functions and Variables
	Include File Method
	Export Qualifier Method
	Marking Imported Symbols in Include File Distribut...
	Recommendations

	Automatic Inclusion of Type Library Resource for V...

	Creating Static Libraries in LabWindows/CVI
	Creating Object Files in LabWindows/CVI
	Calling Windows SDK Functions in LabWindows/CVI
	Windows SDK Include Files
	Using Windows SDK Functions for User Interface Cap...
	Using Windows SDK Functions to Create Multiple Thr...
	Automatic Loading of SDK Import Libraries

	Setting Up Include Paths for LabWindows/CVI, ANSI ...
	Compiling in LabWindows/CVI for Linking in LabWind...
	Compiling in LabWindows/CVI for Linking in an Exte...
	Compiling in an External Compiler for Linking in a...
	Compiling in an External Compiler for Linking in L...

	Handling Hardware Interrupts under Windows�95/NT

	Chapter 4 Windows 3.1 Compiler/Linker Issues
	Using Modules Compiled by LabWindows/CVI
	Using 32-Bit Watcom Compiled Modules under�Windows...
	Using 32-Bit Borland or Symantec Compiled Modules ...
	16-Bit Windows DLLs
	Helpful LabWindows/CVI Options for Working with DL...
	DLL Rules and Restrictions
	DLL Glue Code
	DLLs That Can Use Glue Code Generated at Load Time...
	DLLs That Cannot Use Glue Code Generated at Load T...
	Loading a DLL That Cannot Use Glue Code Generated ...

	Recognizing Windows Messages Passed from a DLL
	Creating 16-bit DLLs with Microsoft Visual C++ 1.5...
	Creating 16-bit DLLs with Borland C++
	DLL Search Precedence

	Chapter 5 UNIX Compiler/Linker Issues
	Calling Sun C Library Functions
	Restrictions on Calling Sun C Library Functions

	Using Shared Libraries in LabWindows/CVI
	Using dlopen

	The LabWindows/CVI Run-Time Engine as a Shared Lib...
	Creating Executables that Use the LabWindows/CVI L...
	Compatible External Compilers
	Static and Shared Versions of the ANSI C and Other...
	Non-ANSI Behavior of Sun Solaris 1 ANSI C Library
	LabWindows/CVI Implements printf and scanf
	Main Function Must Call InitCVIRTE
	Run State Change Callbacks Are Not Available in Ex...

	Using Externally Compiled Modules
	Restrictions on Externally Compiled Modules
	Compiling Modules With External Compilers

	Locking Process Segments into Memory Using plock()...
	UNIX Asynchronous Signal Handling
	Solaris 1 ANSI C Library Implementation
	Replacement Functions
	Additional Functions Not Found in Sun Solaris 1 li...

	Incompatibilities among LabWindows/CVI, Sun Solari...
	Between LabWindows/CVI and ANSI C
	Between LabWindows/CVI and Sun Solaris

	Chapter 6 Building Multiplatform Applications
	Multiplatform Programming Guidelines
	Library Issues
	Externally Compiled Modules

	Multiplatform User Interface Guidelines

	Chapter 7 Creating and Distributing Standalone Executables a...
	Introduction to the Run-Time Engine
	Distributing Standalone Executables under Windows
	Minimum System Requirements for Windows 95/NT
	No Math Coprocessor Required for Windows 95/NT
	Minimum System Requirements for Windows 3.1
	Math Coprocessor Software Emulation for Windows 3....

	Distributing Standalone Executables under UNIX
	Distributing Standalone Executables under Solaris ...
	Distributing Standalone Executables under Solaris ...
	Minimum System Requirements for UNIX

	Translating the Message File

	Configuring the Run-Time Engine
	Solaris 1 Patches Required for Running Standalone ...
	Configuration Option Descriptions
	cvirtx (Windows 3.1 Only)
	cvidir (Windows Only)
	useDefaultTimer (Windows Only)
	DSTRules
	UNIX Options

	Necessary Files for Running Executable Programs
	Necessary Files for Using DLLs Created in�Windows�...
	Location of Files on the Target Machine for Runnin...
	LabWindows/CVI Run-Time Engine under Windows 95/NT...
	Run-Time Library DLLs
	Low-Level Support Driver
	Message, Resource, and Font Files
	National Instruments Hardware I/O Libraries

	LabWindows/CVI Run-Time Engine under Windows 3.1
	LabWindows/CVI Run-Time Engine under Sun Solaris
	Rules for Accessing UIR, Image, and Panel State Fi...
	Rules for Using DLL Files under Windows 95/NT
	Rules for Using DLL Files under Windows 3.1
	Rules for Loading Files Using LoadExternalModule
	Forcing Modules that External Modules Refer to int...
	Using LoadExternalModule on Files in the Project
	Using LoadExternalModule on Library and Object Fil...
	Using LoadExternalModule on DLL Files under Window...
	Using LoadExternalModule on DLL and Path Files und...
	Using LoadExternalModule on Source Files (.c)

	Rules for Accessing Other Files
	Error Checking in Your Standalone Executable or DL...

	Chapter 8 Distributing Libraries and Function Panels
	How to Distribute Libraries
	Adding Libraries to User’s Library Menu
	Specifying Library Dependencies

	Chapter 9 Checking for Errors in LabWindows/CVI
	Error Checking
	Status Reporting by LabWindows/CVI Libraries and�I...
	User Interface Library
	Analysis/Advanced Analysis Libraries
	Easy I/O for DAQ Library
	Data Acquisition Library
	VXI Library
	GPIB/GPIB 488.2 Library
	RS-232 Library
	VISA Library
	IVI Library
	TCP Library
	DDE Library
	ActiveX Automation Library
	X Property Library
	Formatting and I/O Library
	Utility Library
	ANSI C Library
	LabWindows/CVI Instrument Drivers

	Appendix A Errors and Warnings
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabWindows/CVI Hardware and Software Configuration...
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	Special Characters/Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Figures
	Figure 7�1. Files Necessary to Run a LabWindows/CV...

	Tables
	Table 1�1. LabWindows/CVI Compiler Limits�
	Table 1�2. LabWindows/CVI Allowable Data Types
	Table 1�3. Stack Size Ranges for LabWindows/CVI
	Table 7�1. LabWindows/CVI Run-Time Engine Files
	Table 7�2. Windows NT Registry Entry Values for th...
	Table 7�3. Pathnames and Targets of Links
	Table A�1. Error Messages (Continued)

